Program: BC (CS)
 Subject: Digital Logic Design
 Assignment Number: 08
 Course Code: CSC-201
 EDP Code: 102002077
 Spring Semester 2020

Q. 1 For the ripple counter shown in Figure 01, show the complete timing diagram for four clock pulses, showing the clock, Q_{0}, and Q_{1} waveforms.

FIGURE 01
Q. 2 For the ripple counter in Figure 02, show the complete timing diagram for eight clock pulses. Show the clock, Q_{0}, Q_{1}, and Q_{2} waveforms.

FIGURE 02
In the counter of Q.2, assume that each flip-flop has a propagation delay from the triggering edge of the clock to a change in the Q output of 8 ns . Determine the worst-case (longest) delay time from a clock pulse to the arrival of the counter in a given state. Specify the state or states for which this worst-case delay occurs.

If the counter of Q. 3 were synchronous rather than asynchronous, what would be the longest delay time?
Q. 5

Show the complete timing diagram for the 5 -stage synchronous binary counter in Figure 03 . Verify that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

