Program: BC (CS)

Subject: Microprocessor \& Assembly Language Assignment Number: 05
 Course Code: CSC-304
 EDP Code: 101902031
 Spring Semester 2019

Q. 1 Which register (in 32-bit mode) manages the stack?
Q. 2 Why is the stack called a LIFO structure?
Q. 3 When a 32-bit value is pushed on the stack, what happens to ESP?
Q. 4 What would happen if the RET instruction was omitted from a procedure?
Q. 5 How are the words Receives and Returns used in the suggested procedure documentation?
Q. 6 Which procedure in the link library generates a random integer within a selected range?
Q. 7 Which procedure in the link library displays "Press [Enter] to continue. . ." and waits for the user to press the Enter key?
Q. 8 Write statements that cause a program to pause for 700 milliseconds.
Q. 9 Which procedure from the link library writes an unsigned integer to the console window in decimal format?
Q. 10 Which procedure from the link library places the cursor at a specific console window location?
Q. 11 What are the required input parameters for the DumpMem procedure?
Q. 12 What are the required input parameters for the ReadString procedure?
Q. 13 Which procedure in the link library generates a random integer within a selected range?
Q. 14 What will be the final value in EAX after these instructions execute?

```
push 5
push 6
pop eax
pop eax
```

Q. 15 Which statement is true about what will happen when the example code runs?

```
1: main PROC
2: push 10
3: push 20
4: call Ex2Sub
5: pop eax
6: INVOKE ExitProcess,0
7: main ENDP
8:
9: Ex2Sub PROC
10: pop eax
11: ret
12: Ex2Sub ENDP
```

a. EAX will equal 10 on line 6
b. The program will halt with a runtime error on Line 10
c. EAX will equal 20 on line 6
d. The program will halt with a runtime error on Line 11
Q. 16 Which statement is true about what will happen when the example code runs?

```
1: main PROC
2: mov eax,30
3: push eax
4: push 40
5: call Ex3Sub
6: INVOKE ExitProcess,0
7: main ENDP
8:
9: Ex3Sub PROC
10: pusha
11: mov eax,80
12: popa
13: ret
14: Ex3Sub ENDP
```

a. EAX will equal 40 on line 6
b. The program will halt with a runtime error on Line 6
c. EAX will equal 30 on line 6
d. The program will halt with a runtime error on Line 13
Q. 17 Which statement is true about what will happen when the example code runs?

```
1: main PROC
2: mov eax,40
3: push offset Here
4: jmp Ex4Sub
5: Here:
6: mov eax,30
7: INVOKE ExitProcess,0
8: main ENDP
9:
10: Ex4Sub PROC
11: ret
12: Ex4Sub ENDP
```

a. EAX will equal 30 on line 7
b. The program will halt with a runtime error on Line 4
c. EAX will equal 30 on line 6
d. The program will halt with a runtime error on Line 11
Q. 18 Which statement is true about what will happen when the example code runs?

```
1: main PROC
2: mov edx,0
3: mov eax,40
4: push eax
5: call Ex5Sub
6: INVOKE ExitProcess,0
7: main ENDP
8:
9: Ex5Sub PROC
10: pop eax
11: pop edx
12: push eax
```

```
13: ret
14: Ex5Sub ENDP
```

a. EDX will equal 40 on line 6
b. The program will halt with a runtime error on Line 13
c. EDX will equal 0 on line 6
d. The program will halt with a runtime error on Line 11
Q. 19 Write a sequence of statements that use only PUSH and POP instructions to exchange the values in the EAX and EBX registers.
Q. 21 Create a procedure that generates a random string of length L, containing all capital letters. When calling the procedure, pass the value of L in EAX, and pass a pointer to an array of byte that will hold the random string. Write a test program that calls your procedure 20 times and displays the strings in the console window.
Q. 22 Write a program that displays a single character at 100 random screen locations, using a timing delay of 100 milliseconds. Hint: Use the GetMaxXY procedure to determine the current size of the console window.
Q. 23 Write a program that displays a single character in all possible combinations of foreground and background colors (16 _ 16 _ 256). The colors are numbered from 0 to 15 , so you can use a nested loop to generate all possible combinations.
Q. 24 Write a program that displays a string in all possible combinations of foreground and background colors $(16 \times 16=256)$. The colors are numbered from 0 to 15 , so you can use a nested loop to generate all possible combinations.

