CHAPTER

11
ANOVA

ANALYSIS OF VARIANCE (ANOVA)

The idea behind the ANOVA is very simple. In words: Tabulate all of the variability in
your experiment and divide into variability ACROSS groups versus variability WITHIN
groups. If the variability ACROSS groups is much greater than the variability WITHIN
groups, then at least one of the groups has a mean that is significantly different from the
others.

ONE-WAY ANOVA (ONE FACTOR OR ONE TREATMENT)

“One way” means that there is a single outcome measure that is being compared across two
or more groups simultaneously. Let us walk through the math for one-way ANOVA for an
experiment that involves a total of k groups, each one having n datapoints in each group.

The variability of a group is simply its variance, which we know (from Chapter 3) is the
Sum of Squares of the datapoints in the group divided by df, its degrees of freedom. If there
are a total of n items X; in group 1, and the mean of the datapoints is called m;j, then

For group 1, Sum of Squares = SS; = (x; — m1)* + (32 — m1)* 4 (x3 — my)*+... (x5 — my)*
Within-group SS added up across all groups =SS, = SS; + SS; + SS3+... SS,
Within-group variance = SS,, /df,,

where df,, = nk — k.

(Note that some textbooks call the variance the “mean square” when talking about
ANOVA, and they refer to within-group variability as the “error.” This terminology is unfor-
tunate because it obscures the fact that ANOVA uses SS and df concepts, just as normal
curves and correlations do.)

In contrast, the across-group variance looks at the deviation of each group’s mean from the
overall grand mean M of all datapoints in the experiment.

Across-group SS added up across all groups = SS, = (m; — M)* + (mp — M)?
+ (m3 — M)* + ... (mx — M)
Across-group variance = S5S,/df,
where, df, =k — 1.
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Finally, we compute the ratio of across-group variability versus within-group variability:
Across-group Var/Within-group Var =(SS,/df,) / (SSx/dfy)

If this value is much greater than 1, then at least one of the groups is significantly different
from the others. A ratio of variances follows the F-distribution (Chapter 3). To calculate the
threshold for significance, one looks up a table of F-values for a given value of df in the numer-
ator (across-group Var, df = k — 1) and df in the denominator (within-group Var, df = nk — k),
and for the desired type I error (usually 0.05). See Box 11.1 for an example worked out by hand.

Tip: When the one-way ANOVA is used to compare two groups, the test is mathemat-
ically equivalent to the t-test and the F-value is equal to the square of the t-value, or F = ..
Thus, if a t-value of ~2 is at the threshold of significance at P = .05, then this corresponds
to F-value of ~4.

Because across-group Var + within-group Var = Total Var, sometimes people will not
compute the across-group variance directly, but instead will compute total variance and sub-
tract the within-group variance, as follows:

Total Variance = SSyy; = (x; — M)* + (xa — M)* + (x3 — M)* + ... (xn — M)?
dfiot=nk — 1
Total Var = SSiot/ dfiot
Across-group Var = Total Var — Within-group Var.

ANOVA IS A PARAMETRIC TEST

Like the t-test, the ANOVA is a parametric test, meaning that it makes certain assumptions
about the distributions of its datapoints:

e each group is sampled from a normal distribution,

e each datapoint in the same group is independent of the others, randomly sampled, and
follows the same underlying population distribution;

¢ the variance of each group is similar.

Just as we said that the t-test can be applied to data which are quasinormal and can be
applied when the variances are “not too different,” so can the ANOVA be used to give rela-
tively robust results when these assumptions are violated.

Tip: Never use an ANOVA when there are less than 5 observations or datapoints per
group, and a minimum of at least 20 per group is generally preferred.

There are specialized statistical tests that can be used to measure how badly an experi-
mental data set strays in terms of normality and equal variance although these are most use-
ful when the number of datapoints per group is relatively large (>~ 30). (Equal variance goes
by the infelicitous term homoscedasticity, which is in keeping with the idiosyncratic termi-
nology used to describe ANOVAs!) Simply plotting and visualizing the data are the best
ways to assess normality and equal variance, to decide if ANOVA is a suitable test. If not,
nonparametric tests can be done instead (see Chapter 12).
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BOX 11.1

AN EXAMPLE OF A ONE-WAY ANALYSIS OF
VARIANCE TEST WORKED OUT BY HAND

Shown is a toy data set, with n = 8 sam-
ples per group, k = 2 groups, Nk = 16 total
samples in the study.

Group 1 Group 2
1 1.5

2 4

3.5 3.5

2 3

8 4

3 2.5

4 1

2.5 3

Total variance:

Grand mean = M = sum of all x;
/N = 3.03125

SS = sum (x; — 3.03125)°

= (1 — 3.03125)> + (2 — 3.03125)% +
(3.5 — 3.03125)% + (2 — 3.03125)> +
(8 — 3.03125)* + (3 — 3.03125)* +

(4 — 3.03125)% + (2.5 — 3.03125)* +
(1.5 — 3.03125)* + (4 — 3.03125)* +
(3.5 — 3.03125)* 4+ (3 — 3.03125)* +
(4 — 3.03125)% + (2.5 — 3.03125)* +
(1 — 3.03125)* + (3 — 3.03125)
=412 + 1.06 + 0.2197 + 1.06 + 24.688
+ 0.00097 + 0.969 + 0.282 + 2.345 +
0.969 + 0.2197 + 0.00097 + 0.969 +
0.2822 + 4.12 + 0.00097

= 41.307
Df=Nk-1=16—-1=15

Total variance = SS/df = 2.7538

Within-group variance:

Group 1 mean = 26.5/8 = 3.25
SS = (1 — 3.25)% 4+ (2 — 3.25)* +
(3.5 — 3.25)> 4+ (2 — 3.25)> + (8 — 3.25)*

+ (3 — 3.25) + (4 — 3.25)> +

(2.5 — 3.25)%

=5.06 + 1.5625 + 0.0625 + 1.5625 +
225625 + 0.0625 + 0.5625 + 0.5625

= 31.9975

Df =nk — k =16 — 2 = 14, Varl =
31.9975/14 = 2.2855

Group 2 mean = 22.5/8 = 2.8125

SS = (1.5 — 2.8125)> 4 (4 — 2.8125)% +
(3.5 — 2.8125)* + (3 — 2.8125)* +

(4 — 2.8125)% + (2.5 — 2.8125)* +

(1 — 2.8125)* + (3 — 2.8125)2

=1.722 + 1.41 + 0.473 + 0.0351 + 1.41
+ 0.098 + 3.29 + 0.0351

= 8.4732
Df =nk — k=16 — 2 =14, Var2
= SS/df = 0.605

Varl + Var2 = 2.8905
Across-group variance:

Grand mean = 3.03,125, mean]l = 3.25,
mean2 = 2.8125

SS = (3.03125 — 3.25)* + (3.03125 —
2.8125)% = 0.0478 + 0.0478 = 0.0957

Df = k — 1 =1, Var = SS/df = 0.0957

Now, test significance:

Var,cross/ Varwithin = 0.0957/2.8905 < 1
Since the ratio is less than one, we immed;i-
ately know that this will not be significant!
The ratio will follow the F-distribution
with numerator k — 1 = 1, denominator
nk — k = 14 degrees of freedom

Use an F-distribution table to look up the
P-value.

Or.. let your statistical software do the
work for you!
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TYPES OF ANOVAs

When samples can be paired across groups, this reduces the within-group variability, and
this increases the power of the ANOVA to detect small differences as being significant.

To see how this occurs, consider the following two situations:

In the first, we examine systolic blood pressure measured in two independent groups of
subjects. One group (subjects 1—3) is measured under baseline conditions, and the other
(subjects 4—6) is exposed to a drug that might alter blood pressure. Note that the subjects
in the no-drug condition will vary among themselves according to their baseline blood
pressures, but the subjects given drug will vary BOTH because they have different baseline
blood pressures (not explicitly measured here) AND ALSO because they will vary in their
response to the drug.

Subject 1 Subject 2 Subject 3
No drug 100 110 120

Subject 4 Subject 5 Subject 6
Given drug 140 100 130

In contrast, if the same subjects are measured before versus after drug treatment, the
values are paired across the two groups:

Subject 1 Subject 2 Subject 3
Before drug 100 110 120
After drug 110 120 135

Here, subjects 1—3 still vary in their baseline blood pressures, but the drug-treated group
will ONLY vary in how each subject responds to the drug. The variability within the drug-
treated group will be less with paired than with nonpaired designs.

This pairing is a simple example of repeated-measures ANOVA. The same subject might
be measured at many different times, e.g., weekly, resulting in many paired measurements
per subject.

Another related way to reduce within-group variability is blocking:
In an unblocked one-way ANOVA, all datapoints in a group are considered together:

Group 1 Group 2
No drug 100, 110, 120
Given drug 140, 100, 130
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In a blocked two-way ANOVA, different subgroups, say males and females, are assessed
separately

Group 1 Group 2
Males Females Males Females
No drug 100 110, 120
Given drug 100 140, 130

Blocking reduces overall within-group variability and hence increases the power of the
ANOVA, because when computing the Sum of Squares, males are only compared against
males and females against females.

A factorial ANOVA is similar to a two-way or blocked ANOVA, but it explicitly looks for
interactions among the factors when the experiment employs factorial designs (Chapter 5). In
the example just given, the ANOVA can detect whether subjects respond differently to the
drug, as well as whether different genders respond differently to the drug.

In a three-way ANOVA, one outcome is related to three different independent variables.
Multivariate ANOVAs are performed when there are two or more outcome variables
measured for each subject or datapoint. And this is only a partial list—seems that every
type of experimental design has a corresponding ANOVA designed to handle it. Generally,
you will be using statistical software to perform ANOVA and simply need to choose which
type of ANOVA is desired, as well as the desired threshold level of significance (type I error).

THE ANOVA SHOWS SIGNIFICANCE; WHAT NEXT?

Obtaining a significant result in an ANOVA test, say at P = .05 or better, merely says that
SOME groups or factors are different than others, but does not pinpoint WHICH groups are
different. So, after all that effort, you still need to carry out multiple comparisons anyway!
Usually these comparisons are done pairwise among each of the groups or subgroups in the
experiment. But there is a subtle difference between carrying out pairwise comparisons alone
versus doing so after performing ANOVA. Namely, in the former case, each comparison has
a false-positive rate of (say) 5% and there is no assurance that any comparisons should be
significant. In contrast, the ANOVA provides evidence that a significant effect does exist,
with an overall risk of a false positive of 5% (or less, depending on the F-value that was
obtained).

So, given a positive ANOVA test, one does further testing using t-tests to identify which groups
or factors are different from the others. It is necessary to correct post hoc comparisons for the
number of t-tests that are performed, to obtain a more realistic estimate of the false-positive rate.

CORRECTION FOR MULTIPLE TESTING

How to correct for multiple testing most appropriately is an entire subject in itself. Correc-
tions are not specific for ANOVA tests but need to be applied whenever multiple statistical
tests are carried out.
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Colquhoun’s Correction

Perhaps the simplest procedure is to focus only on tests that achieve a P-value of .001 or
less. This takes care of most sins that might have been committed in experimental design as
well as multiple testing and has the virtue of restricting the investigator’s attention to findings
that are large and most likely to be reproducible. However, this is a very conservative pro-
cedure, that is, it reduces the power of each test by bending over backward to avoid false pos-
itives. Most scientifically meaningful findings will not satisfy this criterion.

Bonferroni Correction

The most famous method of correcting for multiple tests is the Bonferroni procedure. If the
desired type 1 error for each test is 0.05, and you carry out 10 tests, then the corrected
threshold for significance is P =.05/10 = .005. That is, none of the 10 tests will be deemed
significant unless they achieve a P-value of .005 or less. For 100 tests, the corrected threshold
is P =.05/100 = .0005. This is, again, a very conservative procedure.

The underlying assumption of the Bonferroni procedure is that each test is independent of the
others, which is often nof the case at all. For example, suppose I am comparing two authors, A
and B, to see how frequently they use pronouns (say, “he” vs. “she”) in the body of their pub-
lished books. This results in two tests: author A versus author B for “he,” and author A versus
author B for “she.” But is the frequency of the word “he” in a person’s writings independent of
the word “she”? Maybe or maybe not. If mentions of “he” and “she” are correlated across one or
both person’s writings (see Chapter 13), then the Bonferroni correction (here, correcting for only
two tests) will actually overcorrect and result in a P-value threshold that is too stringent, i.e., too
low. In sociology, suppose I am studying the elderly and testing whether two subgroups tend to
apply for retirement benefits at different ages. Test A compares low-income versus high-income
people, and test Bcompares people who identify as belonging to one race or another. If thereis a
correlation between race and income, these two tests are not independent, and again, the Bon-
ferroni procedure will be too conservative.

Other Correction Procedures

A variety of correction methods have been proposed and popularly applied for post hoc anal-
ysis of ANOVA test results. These go by names such as the Newman—Keuls method, Tukey’s
honest significance test, Scheffé’s method, and others. They differ in their details and how conser-
vative they are, and none is clearly preferred for all experiments. Choosing one of these goes
beyond the scope of this book. With statistical software, it is easy to examine and compare how
these different methods will alter the P-values of a finding in your own experiment.

Benjamini—Hochberg Procedure

This is very popular in fields such as bioinformatics where many thousands of statistical tests
may be carried out simultaneously. The idea is to specify a desired False Discovery Rate (FDR),
which is the fraction of positive tests that are false positives. The Benjamini—Hochberg
method at a specified FDR of 5% identifies the threshold level of significance, such that only
5% of the tests that achieve that P-value or less will be false positives. This generally gives a
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corrected P-value threshold that is less conservative than applying the Bonferroni correction.
(Bonferroni adjusts P = .05 to a corrected threshold of .05/n, where n is the total number of sta-
tistical tests carried out, whereas the Benjamini—Hochberg procedure adjusts the threshold to
i x 0.05/n, where i is the number of positive tests.)

Permutation Testing

Permutation testing is a nonparametric method of carrying out statistical testing, which has a
built-in correction for multiple testing. Permutation tests are discussed in detail in Chapter 12.

You should be aware that if you carry out 20 different t-tests during the course of
analyzing your data, on average, one of the tests will achieve significance at P = .05 just
by chance. So it is important to compare significance levels before versus after correction
(by any one of these methods) to judge for yourself whether to take the finding seriously
or not. Just as we said there is no magical value of P = .05 that determines whether a finding
is truly significant or not, there is no magical value of correction that determines whether the
finding is worth studying and reporting, either.
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