	Department of Electrical Engine Assignment Date: 23/06/2020	eering				
<u>Course Details</u>						
Course Title:	Analog and Digital Communication System	Module:				
Instructor:		Total Marks:	50			
	Student Details					
Name:		Student ID:				

Q.1	(a)	How a Line Coder and Regenerative Repeater plays a role in digital communication system. Explain in detail Derive a mathematical expression used to find the Power Spectral Density of different line coders used in digital communication systems		
	(b)			
	(a)	Explain along with the diagram the concept of equalizers in regenerative repeaters.	Marks 6	
Q2.	(b)	How QAM systems are used in digital communication system. Explain along with the QAM architecture.	Marks 6	
Q3.	(a)	For a (6,3) code, the generator matrix G is $G = \begin{cases} 1 & 0 & 0 & 10 & 1 \\ 0 & 1 & 0 & 01 & 1 \\ 0 & 0 & 1 & 11 & 0 \end{cases}$	Marks 8	
		 For all eight possible data words. Find Find the correspond codewords and verify that this code is a single error correcting code. If the receiver receives r = 100011. Determine the corresponding data word if the channel is BSC and the maximum likelihood decision is used. 		

	(b)	Construct a systematic (7,4) cyclic code using a generator polynomial $g(x) = x^3+x^2+1$ using the data vector d = 1010.	Marks 6
Q.4	(a)	Explain the concept of non-linear modulators and its types in the generation of DSB-SC signals.	Marks 6
	(b)	Explain the process of Demodulation of AM signals. Explain each type along with its diagram.	Marks 6