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Problem-Solving Agents

• Intelligent agents are supposed to maximize their performance measure.

• Achieving this is sometimes simplified if the agent can adopt a goal and aim at 
satisfying it.

• Goal formulation, based on the current situation and the agent’s performance 
measure, is the first step in problem solving. 

• The solution to any problem is a fixed sequence of actions.

• The process of looking for a sequence of actions that reaches the goal is called 
search.



Problem-Solving Agents

• A search algorithm takes a problem as input and returns a solution in the form of 
an action sequence. 

• Once a solution is found, the actions it recommends can be carried out.

• A simple problem-solving agent, thus 

• first formulates a goal and a problem,

• searches for a sequence of actions that would solve the problem, 

• and then executes the actions one at a time. 

• When this is complete, it formulates another goal and starts over.



Uniformed Search

• Uniformed search is also known as blind search.

• While searching you have no clue whether one non-goal state is better than any 
other, your search is blind.

• Various blind strategies:

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Iterative deepening search



Breadth-first search (BFS)

• Breadth-first search is a simple strategy in which the root node is expanded 
first, then all successors of the root node are expanded next, then their 
successors, and so on. 

• In general, all the nodes are expanded at a given depth in the search tree 
before any nodes at the next level are expanded. 



Breadth-first search (BFS)

• Expand shallowest unexpanded node

• Implementation:

• fringe is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the 
queue.

Is A a goal state?



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

• fringe is a FIFO queue, i.e., new successors go at end

Expand:
fringe = [B,C]

Is B a goal state?



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:
• fringe is a FIFO queue, i.e., new successors go at end

Expand:
fringe=[C,D,E]

Is C a goal state? 



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

• fringe is a FIFO queue, i.e., new successors go at end

Expand:
fringe=[D,E,F,G]

Is D a goal state?



Example
BFS



Breadth-first search

• Technically, breadth-first search is optimal if the path cost is a non-decreasing 
function of the depth of the node. 

• The most common such scenario is that all actions have the same cost. 

• So far, the news about breadth-first search has been good. 

• The news about time and space is not so good. 

• Imagine searching a uniform tree where every state has b successors. 

• The root of the search tree generates b nodes at the first level, each of which 
generates b more nodes, for a total of b2 at the second level.

• Each of these generates b more nodes, yielding b3 nodes at the third level, and so 
on. 



Breadth-first search

• Now suppose that the solution is at depth d. 

• In the worst case, it is the last node generated at that level. 

• Then the total number of nodes generated is b + b2 + b3 + ···+ bd = O(bd).

• Space Complexity is O(bd+1) (keeps every node in memory, either in fringe or on a 
path to fringe).

• BFS is optimal if we guarantee that deeper solutions are less optimal, e.g. step-
cost=1).

• So space is the bigger problem (more than time).



Uniform-cost search

• When all step costs are equal, breadth-first search is optimal because it always 
expands the shallowest unexpanded node. 

• By a simple extension, we can find an algorithm that is optimal with any step-cost 
function. 

• Instead of expanding the shallowest node, uniform-cost search expands the node 
n with the lowest path cost g(n). 

• This is done by storing the frontier as a priority queue ordered by g.



Uniform-cost search

• Uniform-cost search is optimal in general.

• Uniform-cost search does not care about the number of steps a path has, but 
only about their total cost. 

• Therefore, it can get stuck in an infinite loop if there is a path with an infinite 
sequence of zero-cost actions.

• Uniform-cost search is guided by path costs rather than depths, so its complexity 
is not easily characterized in terms of b and d. 



Depth-first search

• Depth-first search always expands the deepest node in the current frontier of the 
search tree. 

• The search proceeds immediately to the deepest level of the search tree, where 
the nodes have no successors.

• As those nodes are expanded, they are dropped from the frontier, so then the 
search “backs up” to the next deepest node that still has unexplored successors. 
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = Last In First Out (LIPO) queue, i.e., put successors at front

Is A a goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[B,C]

Is B a goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[D,E,C]

Is D = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[H,I,E,C]

Is H = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[I,E,C]

Is I = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:
• fringe = LIFO queue, i.e., put successors at front

queue=[E,C]

Is E = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[J,K,C]

Is J = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:
• fringe = LIFO queue, i.e., put successors at front

queue=[K,C]

Is K = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:
• fringe = LIFO queue, i.e., put successors at front

queue=[C]

Is C = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[F,G]

Is F = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:
• fringe = LIFO queue, i.e., put successors at front

queue=[L,M,G]

Is L = goal state?
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Depth-first search

• Expand deepest unexpanded node

• Implementation:

• fringe = LIFO queue, i.e., put successors at front

queue=[M,G]

Is M = goal state?
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Example DFS



Depth-first search

• DFS is not complete, it fails in infinite-depth spaces

• Time Complexity is O(bm) with m=maximum depth

• terrible if m is much larger than d

• but if solutions are dense, may be much faster than      

breadth-first

• Space complexity is  O(bm), i.e., linear space! 

• (we only need to remember a single path + expanded unexplored nodes)

• It is not optimal (It may find a non-optimal goal first).



Iterative deepening search (IDS)

• To avoid the infinite depth problem of DFS, we can decide to only search until 
depth L, i.e. we don’t expand beyond depth L.

• Depth-Limited Search

• What if solution is deeper than L?  Increase L iteratively.

• Iterative Deepening Search

• As we shall see: this inherits the memory advantage of Depth-First search.



Iterative deepening search L=0



Iterative deepening search L=1



Iterative deepening search L=2



Iterative deepening search L=3



35

Properties of iterative deepening search

• Complete: Yes

• Time Complexity: (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space Complexity: O(bd)

• Optimal: Yes, if step cost = 1 or increasing function of depth.



Iterative deepening search

• In general, iterative deepening is the preferred uninformed search method when 
the search space is large and the depth of the solution is not known. 
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Example IDS
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Summary of algorithms
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