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Problem-Solving Agents

* Intelligent agents are supposed to maximize their performance measure.

* Achieving this is sometimes simplified if the agent can adopt a goal and aim at
satisfying it.

* Goal formulation, based on the current situation and the agent’s performance
measure, is the first step in problem solving.

* The solution to any problem is a fixed sequence of actions.

* The process of looking for a sequence of actions that reaches the goal is called
search.



Problem-Solving Agents

* A search algorithm takes a problem as input and returns a solution in the form of
an action sequence.

* Once a solution is found, the actions it recommends can be carried out.

* A simple problem-solving agent, thus
* first formulates a goal and a problem,
 searches for a sequence of actions that would solve the problem,
* and then executes the actions one at a time.

 When this is complete, it formulates another goal and starts over.



Uniformed Search

 Uniformed search is also known as blind search.

* While searching you have no clue whether one non-goal state is better than any
other, your search is blind.
» Various blind strategies:
* Breadth-first search
* Uniform-cost search
* Depth-first search
* |terative deepening search



Breadth-first search (BFS)

* Breadth-first search is a simple strategy in which the root node is expanded
first, then all successors of the root node are expanded next, then their
successors, and so on.

* In general, all the nodes are expanded at a given depth in the search tree
before any nodes at the next level are expanded.



Breadth-first search (BFS)

* Expand shallowest unexpanded node

* Implementation:

* fringe is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the
queue.

Is A a goal state? [::‘ @



Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end

Expand:

fringe = [B,C]
Is B a goal state? [:} 9 G



Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end
Expand:

A)
fringe=[C,D,E]
Is C a goal state? E D’ e
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Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end
Expand:

(4]
fringe=[D,E,FG]
Is D a goal state? ﬂ ﬁ'
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Breadth-first search

* Technically, breadth-first search is optimal if the path cost is a non-decreasing
function of the depth of the node.

* The most common such scenario is that all actions have the same cost.
* So far, the news about breadth-first search has been good.

* The news about time and space is not so good.

* Imagine searching a uniform tree where every state has b successors.

* The root of the search tree generates b nodes at the first level, each of which
generates b more nodes, for a total of b? at the second level.

* Each of these generates b more nodes, yielding b3 nodes at the third level, and so
on.



Breadth-first search

* Now suppose that the solution is at depth d.
* |In the worst case, it is the last node generated at that level.
* Then the total number of nodes generated is b + b2 + b3 + ---+ b4 = O(b9).

* Space Complexity is O(b?*1) (keeps every node in memory, either in fringe or on a
path to fringe).

* BFS is optimal if we guarantee that deeper solutions are less optimal, e.g. step-
cost=1).

* So space is the bigger problem (more than time).



Uniform-cost search

* When all step costs are equal, breadth-first search is optimal because it always
expands the shallowest unexpanded node.

* By a simple extension, we can find an algorithm that is optimal with any step-cost
function.

* Instead of expanding the shallowest node, uniform-cost search expands the node
n with the lowest path cost g(n).

* This is done by storing the frontier as a priority queue ordered by g.



Uniform-cost search

Uniform-cost search is optimal in general.

Uniform-cost search does not care about the number of steps a path has, but
only about their total cost.

Therefore, it can get stuck in an infinite loop if there is a path with an infinite
sequence of zero-cost actions.

Uniform-cost search is guided by path costs rather than depths, so its complexity
is not easily characterized in terms of b and d.



Depth-first search

* Depth-first search always expands the deepest node in the current frontier of the
search tree.

* The search proceeds immediately to the deepest level of the search tree, where
the nodes have no successors.

* As those nodes are expanded, they are dropped from the frontier, so then the
search “backs up” to the next deepest node that still has unexplored successors.



Depth-first search

* Expand deepest unexpanded node

* Implementation:
 fringe = Last In First Out (LIPO) queue, i.e., put successors at front

Is A a goal state? b@
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[B,C] p{.5)

Is B a goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[D,E,C]

Is D = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[H,I,E,C]

Is H = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[I],E,C]

Is I = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[E,C]

Is E = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[J],K,C]

Is J = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[K,C]

Is K = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[C]

Is C = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[FG]

Is F = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[L,M,G]

Is L = goal state?
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Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[M,G]

Is M = goal state?

27



Example DFS
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Depth-first search

* DFS is not complete, it fails in infinite-depth spaces
* Time Complexity is O(b™) with m=maximum depth

* terrible if m is much larger than d
* but if solutions are dense, may be much faster than
breadth-first

» Space complexity is O(bm), i.e., linear space!
e (we only need to remember a single path + expanded unexplored nodes)

* It is not optimal (It may find a non-optimal goal first).



lterative deepening search (IDS)

e To avoid the infinite depth problem of DFS, we can decide to only search until
depth L, i.e. we don’t expand beyond depth L.

* Depth-Limited Search

e What if solution is deeper than L? = Increase L iteratively.

* Iterative Deepening Search

e As we shall see: this inherits the memory advantage of Depth-First search.



imit=0

Iterative deepening search L=0




lterative deepening search L=1




lterative deepening search [=2

/. m K@h K?\.

Limit=2 p(2)




lterative deepening search [=3




Properties of iterative deepening search

Complete: Yes

Time Complexity: (d+1)b° + d b? + (d-1)b? + ... + b9 = O(b?)
Space Complexity: O(bd)

Optimal: Yes, if step cost = 1 or increasing function of depth.
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lterative deepening search

* |n general, iterative deepening is the preferred uninformed search method when
the search space is large and the depth of the solution is not known.



Example IDS

£ 4 £ £

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

Stages in Iterative-Deepening Search
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Summary of algorithms

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y  O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes
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