Artificial Intelligence

Engr. Madeha Mushtaq
Department of Computer Science
Iqra National University

Problem-Solving Agents

* Intelligent agents are supposed to maximize their performance measure.

* Achieving this is sometimes simplified if the agent can adopt a goal and aim at
satisfying it.

* Goal formulation, based on the current situation and the agent’s performance
measure, is the first step in problem solving.

* The solution to any problem is a fixed sequence of actions.

* The process of looking for a sequence of actions that reaches the goal is called
search.

Problem-Solving Agents

* A search algorithm takes a problem as input and returns a solution in the form of
an action sequence.

* Once a solution is found, the actions it recommends can be carried out.

* A simple problem-solving agent, thus
* first formulates a goal and a problem,
 searches for a sequence of actions that would solve the problem,
* and then executes the actions one at a time.

 When this is complete, it formulates another goal and starts over.

Uniformed Search

 Uniformed search is also known as blind search.

* While searching you have no clue whether one non-goal state is better than any
other, your search is blind.
» Various blind strategies:
* Breadth-first search
* Uniform-cost search
* Depth-first search
* |terative deepening search

Breadth-first search (BFS)

* Breadth-first search is a simple strategy in which the root node is expanded
first, then all successors of the root node are expanded next, then their
successors, and so on.

* In general, all the nodes are expanded at a given depth in the search tree
before any nodes at the next level are expanded.

Breadth-first search (BFS)

* Expand shallowest unexpanded node

* Implementation:

* fringe is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the
queue.

Is A a goal state? [::‘ @

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end

Expand:

fringe = [B,C]
Is B a goal state? [:} 9 G

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end
Expand:

A)
fringe=[C,D,E]
Is C a goal state? E D’ e
L &

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
* fringe is a FIFO queue, i.e., new successors go at end
Expand:

(4]
fringe=[D,E,FG]
Is D a goal state? ﬂ ﬁ'
>@ & @O @

19

Goal
node

Example
BFS

e[| rfst[n] [eo+ er[<t]] [n]e]i afn| [+ e t]] [e[o] [ml=]a] [m]]n v
09200 72 Of |00]=w| 10 [=| |=| |\&] [t]=|©] |ooj~|n| [og|r~|~ “+r el hed (o I g =) 8l el O |~ || ofr
—[r~ o= el el felede] (el (el (e el ef= [rfe]=| [eifc]— of—| |oefrdl=| [o]ed]=
r
it Ol |fCle] [O g Ll g Ul B e B Ui U]|\ 0| = V) gl hed el] || gl hei gl ek i gl
£ 0| |0|—f [0 O[] Ol (e O v ome) 20~ Wl r~| I~
BE | 0 n -+ B P o e [o ol ¢
clf=r] (el =esf |e=fes] e e]| (el el =] o= o [ee|o o [t SIEEE RIAEE o [eifel— 1 (]~
A d (s L v Lall'e! |V WV TV | Wt il b8 TV
00| O|\ 00| [\ 00[++|\0 00|+ |\O! [0 \0 [%0[O} 00[—|\0 00| =[O w0l |~ 0[O~
00 r~ \C U] <t o ™ — o
€ r € ™~ |0 - O T y— O =~ p— Lod L y— |~ —)1~ Py (] el B8 — (]l
n| | | |\ (g hed gl v ||
OV 0[O [0 00| ~|\0 20|\0|r~
o\ [~r 00 (M=t (=] CISEE vy o |-
ot el | fatlhedial
0\ 0 |C B[O~
o (e~ o [l I
ooz v
00|\0
P— (o E L)
T
g 3
-
w e

Breadth-first search

* Technically, breadth-first search is optimal if the path cost is a non-decreasing
function of the depth of the node.

* The most common such scenario is that all actions have the same cost.
* So far, the news about breadth-first search has been good.

* The news about time and space is not so good.

* Imagine searching a uniform tree where every state has b successors.

* The root of the search tree generates b nodes at the first level, each of which
generates b more nodes, for a total of b? at the second level.

* Each of these generates b more nodes, yielding b3 nodes at the third level, and so
on.

Breadth-first search

* Now suppose that the solution is at depth d.
* |In the worst case, it is the last node generated at that level.
* Then the total number of nodes generated is b + b2 + b3 + ---+ b4 = O(b9).

* Space Complexity is O(b?*1) (keeps every node in memory, either in fringe or on a
path to fringe).

* BFS is optimal if we guarantee that deeper solutions are less optimal, e.g. step-
cost=1).

* So space is the bigger problem (more than time).

Uniform-cost search

* When all step costs are equal, breadth-first search is optimal because it always
expands the shallowest unexpanded node.

* By a simple extension, we can find an algorithm that is optimal with any step-cost
function.

* Instead of expanding the shallowest node, uniform-cost search expands the node
n with the lowest path cost g(n).

* This is done by storing the frontier as a priority queue ordered by g.

Uniform-cost search

Uniform-cost search is optimal in general.

Uniform-cost search does not care about the number of steps a path has, but
only about their total cost.

Therefore, it can get stuck in an infinite loop if there is a path with an infinite
sequence of zero-cost actions.

Uniform-cost search is guided by path costs rather than depths, so its complexity
is not easily characterized in terms of b and d.

Depth-first search

* Depth-first search always expands the deepest node in the current frontier of the
search tree.

* The search proceeds immediately to the deepest level of the search tree, where
the nodes have no successors.

* As those nodes are expanded, they are dropped from the frontier, so then the
search “backs up” to the next deepest node that still has unexplored successors.

Depth-first search

* Expand deepest unexpanded node

* Implementation:
 fringe = Last In First Out (LIPO) queue, i.e., put successors at front

Is A a goal state? b@

16

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[B,C] p{.5)

Is B a goal state?

17

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[D,E,C]

Is D = goal state?

18

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[H,I,E,C]

Is H = goal state?

19

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[I],E,C]

Is I = goal state?

20

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[E,C]

Is E = goal state?

21

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[J],K,C]

Is J = goal state?

22

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[K,C]

Is K = goal state?

23

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[C]

Is C = goal state?

24

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[FG]

Is F = goal state?

25

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[L,M,G]

Is L = goal state?

26

Depth-first search

* Expand deepest unexpanded node

* Implementation:
* fringe = LIFO queue, i.e., put successors at front

queue=[M,G]

Is M = goal state?

27

Example DFS

[2]8]3] 2[8]3] [2]8]3]
1]6]4 1]6]4] 116]4
% mms o
2[8[3] HEE 21813
11614 11614 116/4
1 175 1 CI715] 1 CI75
2]8]3] [2]8]3] 2]8]3
1614 614 _{6]4]
2 [M715 2 715 2 [17]5
8[3] |_|B[3] FEIE] 21813
21614 2]6]4 6] |4 6] |4
3 [7]5] 3 (75 7 [715] ?'IA
el IE EEE
21614 21614 61814
4 11715 4 (11715 8 11715
e B o
4 20 |4 . (OS]4
5 (713 6 [11715] # Discarded before 9 [117]5
generating node 7
(a) (b) (c)

Generation of the First Few Nodes in a Depth-First Search 2

Depth-first search

* DFS is not complete, it fails in infinite-depth spaces
* Time Complexity is O(b™) with m=maximum depth

* terrible if m is much larger than d
* but if solutions are dense, may be much faster than
breadth-first

» Space complexity is O(bm), i.e., linear space!
e (we only need to remember a single path + expanded unexplored nodes)

* It is not optimal (It may find a non-optimal goal first).

lterative deepening search (IDS)

e To avoid the infinite depth problem of DFS, we can decide to only search until
depth L, i.e. we don’t expand beyond depth L.

* Depth-Limited Search

e What if solution is deeper than L? = Increase L iteratively.

* Iterative Deepening Search

e As we shall see: this inherits the memory advantage of Depth-First search.

imit=0

Iterative deepening search L=0

lterative deepening search L=1

lterative deepening search [=2

/. m K@h K?\.

Limit=2 p(2)

lterative deepening search [=3

Properties of iterative deepening search

Complete: Yes

Time Complexity: (d+1)b° + d b? + (d-1)b? + ... + b9 = O(b?)
Space Complexity: O(bd)

Optimal: Yes, if step cost = 1 or increasing function of depth.

35

lterative deepening search

* |n general, iterative deepening is the preferred uninformed search method when
the search space is large and the depth of the solution is not known.

Example IDS

£ 4 £ £

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

Stages in Iterative-Deepening Search

37

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

38

End of Slides

