Department of Electrical Engineering
 Assignment
 Date: 07/05/2020

Course Details

Course Title: Numerical Analysis \qquad Instructor: \qquad

Module:

Total Marks: 20

Student Details

Name: \qquad Student ID: \qquad

Q1	(a)	Consider the tri-diagonal matrix $\mathbf{A}=\left(\begin{array}{lll} 4 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right)$ To find eigenvalues one uses a QR algorithm involving successive iterations of Givens rotations. Apply one complete iteration of Givens rotations to this matrix.	Marks 10
Q2	(a)	Consider the function $\sin (x)$. a. Compute the quadratic Taylor polynomial approximation to $\sin (\mathrm{x})$ expanded about the point $\mathrm{x}=\pi / 4$. b. Give an upper bound on the error of this Taylor polynomial for $x \in[0, \pi / 2]$. c. Compute the polynomial that interpolates $\sin (x)$ at the points $x=0, \pi / 4, \pi / 2$. d. Give an upper bound on the error of this interpolating polynomial for $\mathrm{x} \in[0$, $\pi / 2]$. Which of the two polynomials have smaller maximum error on $\mathrm{x} \in[0, \pi / 2]$?	$\begin{gathered} \hline \text { Marks } 10 \\ \hline \text { CLO } 1 \end{gathered}$

