Department of Electrical Engineering Assignment Date: 07/05/2020

Course Details

Course Title:	Numerical Analysis	Module:	
Instructor:		Total Marks:	20

Student Details

а	m	۱e	::
-			•••
	а	an	ame

Student ID:

Q1	(a)	Consider the tri-diagonal matrix $(4, 2, 0)$	Marks 10	
		$\mathbf{A} = \begin{pmatrix} \mathbf{H} & \mathbf{Z} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	CLO 2	
		$\mathbf{A} = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 4 & 4 \end{bmatrix}$		
		$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$		
		To find eigenvalues one uses a QR algorithm involving successive iterations of		
		Givens rotations. Apply one complete iteration of Givens rotations to this		
		matrix.		
Q2	(a)	Consider the function $sin(x)$.	Marks 10	
		a. Compute the quadratic Taylor polynomial approximation to sin(x) expanded		
		about the point $x = \pi/4$.		
		b. Give an upper bound on the error of this Taylor polynomial for $x \in [0, \pi/2]$.		
		c. Compute the polynomial that interpolates $sin(x)$ at the points $x = 0$, $\pi/4$, $\pi/2$.		
		d. Give an upper bound on the error of this interpolating polynomial for $x \in [0, -\infty)$		
		$\pi/2$]. Which of		
		the two polynomials have smaller maximum error on $x \in [0, \pi/2]$?		