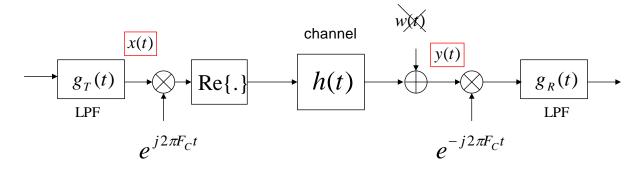
	Department of Electrical Engine Assignment Date: 20/04/2020	eering	
	Course Details		
Course Title: Instructor:	Advance Wireless System	Module: Total Marks:	<u> </u>
	Student Details		
Name:		Student ID:	

INSTRUCTIONS:

- 1. Answers to question 1 must be written in form of Research *Paper*.
- 2. Each answer must be supported by related research articles (at least 3)
- 3. The answers must be in your own words and references must be cited wherever it is necessary
- 4. Plagiarized content will <u>NOT</u> be accepted (Max allowed similarity Index: 15%)
- 5. The solution must be uploaded before the end of deadline mentioned on the <u>Online Portal</u> of subject.


Question No. 1

Write a detailed report of DVB-S2 standard that should incorporate the details related to Transmission System, Basic Architecture, Subsystem Specifications and Receiver System.

Question No. 2

Consider the following communication system with impulse response of wireless channel as h(t) where the received signal after passing through the radio channel is ideally is desired to be

$$y(t) = \operatorname{Re}\left\{x(t)e^{j2\pi F_{c}t}\right\}$$

Model the channel and show the output by considering

- a. Only the time shift due to multipath transmission for LOS communication
- b. Doppler frequency shift in multipath LOS communication
- c. Both (i), (ii) along with attenuation in LOS communication

Question 3

Consider the No-LOS conditions to represent the received signal through Rayleigh fading channel in terms of $r_{\ell}(t)$ and $c_{\ell}(t)$