
1

Chapter 2
Boolean Algebra and Logic Gates

 The most common postulates used to formulate
various algebraic structures are:

1. Closure. N={1,2,3,4…}, for any a,b N we obtain a
unique c N by the operation a+b=c. Ex:2−3= −1 and
2,3 N, while (−1) N.

2. Associative law. A binary operator * on a set S is said to
be associative whenever

(x * y) * z = x * (y * z) for all x, y, z, S

3. Commutative law.
x * y = y * x for all x, y S

2

2-1. Basic Definitions
4. Identity element. e is identity element which belongs to S.

e * x = x * e = x for every x S
Ex: x + 0 = 0 + x = x for any x I={…,−2, −1, 0, 1, 2,…}

x * 1 = 1 * x = x
5. Inverse. In the set of integers, I, with e = 0

x * y = e ; a + (−a) = 0
−a and y are inverse elements

6. Distributive law. If * and . are two binary operators on a
set S, * is said to be distributive over . Whenever

x * (y . z) =(x * y) . (x * z)

3

2-1. Basic Definitions
 The operators and postulates have the following

meanings:
The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator . defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of a = 1/a defines division, i.e.,

a . 1/a = 1

The only distributive law applicable is that of . over +:

a . (b + c) = (a . b) + (a . c)

4

2-2. Axiomatic Definition of
Boolean Algebra

 Boolean algebra is defined by a set of elements, B,
provided following postulates with two binary
operators, + and ., are satisfied:

1. Closure with respect to the operators + and ..
2. An identity element with respect to + and . is 0 and

1,respectively.
3. Commutative with respect to + and .. Ex: x + y = y + x
4. + is distributive over . : x + (y . z)=(x + y) . (x + z)

. is distributive over + : x . (y + z)=(x . y) + (x . z)
5. Complement elements: x + x’= 1 and x . x’= 0.
6. There exists at least two elements x,y B such that x≠y.

5

Comparing Boolean algebra with
arithmetic and ordinary algebra.

1. Huntington postulates don’t include the associative law,
however, this holds for Boolean algebra.

2. The distributive law of + over . is valid for Boolean
algebra, but not for ordinary algebra.

3. Boolean algebra doesn’t have additive and multiplicative
inverses; therefore, no subtraction or division operations.

4. Postulate 5 defines an operator called complement that is
not available in ordinary algebra.

5. Ordinary algebra deals with the real numbers. Boolean
algebra deals with the as yet undefined set of elements, B,
in two-valued Boolean algebra, the B have two elements,
0 and 1.

6

Two-Valued Boolean Algebra

 With rules for the two binary operators + and . as
shown in the following table, exactly the same as
AND, OR , and NOT operations, respectively.

 From the tables as defined by postulate 2.

7

Diagram of the Distributive law

 To emphasize the similarities between two-valued
Boolean algebra and other binary systems, this algebra
was called “binary logic”. We shall drop the adjective
“two-valued”from Boolean algebra in subsequent
discussions.

x . (y + z)=(x . y) + (x . z)

8

2-3. Basic theorems and
properties of Boolean algebra

 If the binary operators and the identity elements
are interchanged, it is called the duality principle.
We simply interchange OR and AND operators and
replace 1’s by 0’s and 0’s by 1’s.

 The theorem 1(b) is the dual of theorem 1(a) and
that each step of the proof in part (b) is the dual
of part (a). Show at the slice after next slice.

9

Postulates and Theorems

10

Basic Theorems
 Basic Theorems: proven by the postulates of table

2-1 as shown above.
Theorem 1(a): x + x = x

= (x + x) . 1 by postulate 2(b)
= (x + x) . (x + x’) 5(a)
= x + xx’ 4(b)
= x + 0 5(b)
= x 2(a)

Theorem 1(b): x . x = x
= x . x + 0 by postulate 2(a)
= xx + xx’ 5(b)
= x (x + x’) 4(a)
= x . 1 5(a)
= x 2(b)

Dual Dual

back

11

Basic Theorems
Theorem 6(a): x + xy = x

= x . 1 + xy by postulate 2(b)
= x (1 + y) 4(a)
= x (y+1) 3(a)
= x . 1 2(a)
= x 2(b)

 The theorems of Boolean algebra can be shown to
hold true by means of truth tables.

First
absorption
theorem

12

Operator Precedence

 The operator Precedence for evaluating Boolean
expression is:

1. Parentheses
2. NOT
3. AND
4. OR

DeMorgan
theorem

13

2-4. Boolean Functions

 Consider the following
Boolean function:

F1 = x + y’z
 A Boolean function can

be represented in a truth
table.

 the binary combinations for
the truth table obtained by
counting from 0 through
2n-1 see table 2-2[0~7(2n-
1)].

14

Simplification of the algebraic

 There is only one way to represent Boolean
function in a truth table.

 In algebraic form, it can be expressed in a variety
of ways.

 By simplifying Boolean algebra, we can reduce the
number of gates in the circuit and the number of
inputs to the gate.

15

Before simplification of Boolean
function

 Consider the following
Boolean function:
F2 = x’y’z + x’yz + xy’

This function with logic gates
is shown in Fig. 2-2(a)

 The function is equal to 1
when xyz = 001 or 011 or
when xyz = 10x .

16

After simplification of Boolean
function

 Simplify the following
Boolean function:

F2 = x’y’z + x’yz + xy’
= x’z (y’+ y) + xy’
= x’z + xy’

 In 2-2 (b), would be
preferable because it
requires less wires and
components.

simplified

17

Equivalent
F2 = x’y’z + x’yz + xy’(primitive)
F2=1 when xyz=001 or 011 or

when xy=10x
F2 = x’z + xy’ (simplified)
F=1 when xz=01 or

when xy=10
 Since both expression

produce the same truth table,
they are said to be equivalent.

18

Algebraic Manipulation

Ex 2-1: 4. x y + x’z + y z

= xy + x’z + yz(x + x’)
= xy + x’z + xyz + x’yz
= xy(1 + z) + x’z(1 + y)
= xy + x’z

Function 5 can be derived from the dual of the steps
used to derive function 4.
 Functions 4 and 5 are known as the consensus

theorem.

counteracted

Consensus term

Merged

19

Complement of the function
Ex 2-2: Find the complement of the function

F1=x’yz’+ x’y’z by applying DeMorgan’s
theorem.

F1’= (x’yz’+ x’y’z)’=(x’yz’)’.(x’y’z)’=(x + y’+ z)(x + y + z’)

Ex2-3: Find the complement of the function
F1=x’yz’+ x’y’z by taking their dual and
complementing each literal.

The dual of F1 is (x’+y+z’)(x’+y’+z)
Complement each literal: (x+y’+z)(x+y+z’)=F1’

20

2-5. Canonical and Standard
forms

 n variables can form 2n(0~2n-1) Minterms, so does
Maxterms (Table 2-3).

 Minterms and Maxterms
Minterms: obtain from an AND term of the n

variables, or called standard product.
Maxterms: n variables form an OR term, or called

standard sum.
 Each Maxterm is the complement of its

corresponding Minterm, and vice versa.
 A sum of minterms or product of maxterms are said

to be in canonical form.

21

Minterms & Maxterms

22

Sum of Minterms
 From a truth table can express

a minterm for each combination
of the variables that produces a
1 in a Boolean function, and
then taking the OR of all those
terms.

<EX.> Upon the table 2-4 that
produces 1 in f1=1:

f1 = x’y’z + xy’z’+ xyz
= m1 + m4 + m7

f1’=x’y’z’+x’yz’+x’yz+xy’z+xyz’

=> f1 = M0 M2 M3 M5 M6

23

Example
Ex.2-4 Express the Boolean function F = A + B’C in a sum of

minterms.
A lost two variables

A = A(B+B’) = AB + AB’ still missing one variable
A = AB(C + C’) + AB’(C + C’)

=ABC + ABC’+ AB’C + AB’C’
B’C lost one variable

B’C = B’C(A + A’) = AB’C + A’B’C
Combining all terms

F = A’B’C+ AB’C’+AB’C+ABC’+ABC = m1+m4+m5+m6+m7

Convenient expression
F(A, B, C) = ∑(1, 4, 5, 6, 7)

Table 2-5 is a directly derivation by using truth table.

24

Product of Maxterms
Ex.2-5 Express the Boolean function F= xy + x’z in a product of

maxterm form.
using distributive law F = xy + x’z =(xy+x’)(xy+z)

= (x + x’)(y + x’)(x + z)(y + z)
= (x’+ y)(x + z)(y + z)

Each OR term missing one variable
x’+ y = x’+ y + zz’= (x’+ y + z)(x’+ y + z’)
x + z = x + z + yy’= (x + y + z)(x + y’+ z)
y + z = y + z + xx’= (x + y + z)(x’+ y + z)

Combining all the terms
F = (x + y + z)(x + y’+ z)(x’+ y + z)(x’+ y + z’)

= M0M2M4M5

A convenient way to express this function
F(x, y, z) = ∏(0, 2 , 4, 5)

25

Conversion between canonical
forms

Ex. Boolean expression: F = xy + x’z
xy = 11 or xz = 01
sum of minterms is
F(x, y, z) = ∑(1, 3, 6, 7)
Since have a total of eight minterms or
maxterms in a function of three variable.
product of maxterms is
F(x, y, z) = ∏(0, 2, 4, 5)

 To convert from one canonical
form to another, interchange the
symbols ∑and ∏and list those
numbers missing from the original
form.

Take complement of F’
by DeMorgan’s
theorem

26

Standard forms
 Another way to express Boolean functions is in

standard form.
1. Sum of products(SOP): F1 = y’+ xy + x’yz’
2. Product of sums(POS): F2 = x(y’+ z)(x’+ y + z’)

27

Standard forms
 F3 is a non-standard form, neither in SOP nor in POS.
 F3 can change to a standard form by using distributive law

and implement in a SOP type.

28

2-6. Other logic operations

 There are 22n functions for n binary variables, for
two variables, n=2, and the possible Boolean
functions is 16. see tables 2-7 and 2-8.

equivalence implicationXORinhibition

29

Other logic operations

30

Function categories

 The 16 functions listed in table 2-8 can be
subdivided into three categories:

1. Two functions that produce a constant 0 or 1.
2. Four functions with unary operations:

complement and transfer.
3. Ten functions with binary operators that define

eight different operations: AND, OR, NAND, NOR,
exclusive-OR, equivalence, inhibition, and
implication.

Impracticality in
standard logic gates

31

2-7. Digital logic gates

 The graphic symbols
and truth tables of
the gates of the
eight different
operations are
shown in Fig.2-5

32

Extension to multiple inputs

 In Fig.2-5, except for the inverter and buffer, can
be extended to have more than two inputs.

 The AND and OR operations possess two
properties: commutative and associative.

x + y = y + x (commutative)
(x + y) + z = x + (y + z) (associative)

33

Non-associativity of the NOR
operator

 The NAND and NOR functions are commutative, not
associative .

(x↓y)↓z = [(x + y)’+ z]’= (x + y) z’= (x + y)z’
x↓(y↓z) = [x + (y + z)’]’= x’(y + z) = x’(y + z)

34

Cascade of NAND gates
 In writing cascaded NOR and NAND operations, one must

use the correct parentheses to signify the proper sequence
of the gates.

Fig.2-7
F = [(ABC)’(DE)’]’= ABC + DE

obtain from DeMorgan’s theorem.

35

XOR gate property
 The XOR and equivalence

gates are both
commutative and
associative and can be
extended to more than
two inputs.

 The XOR is an odd
function.

 The three inputs XOR is
normally implemented by
cascading 2-input gates.

36

Positive and negative logic
 We assign to the relative amplitudes of the two

signal levels as the high-level and low-level
(Fig.2-9).

1. High-level (H): represent logic-1 as a positive
logic system.

2. Low-level (L): represent logic-0 as a negative
logic system.

 It is up to the user to decide on a positive or
negative logic polarity between some certain
potential.

37

Positive and negative logic
Ex. The electronic shown in

Fig.2-10(b), truth table
listed in (a).

It specifies the physical
behavior of the gate when H
is 3 volts and L is 0 volts.

38

Positive logic

 The truth table of
Fig.2-10(c) assumes
positive logic
assignment , with H=1
and L=0.

 It is the same as the
one for the AND
operation.

39

Negative logic
 The table represents the OR

operation even though the
entries are reversed.

 The conversion from positive
logic to negative logic, and
vice versa, is essentially an
operation that changes 1’s to
0’s and 0’s to 1’s(dual) in both
the inputs and the outputs of
a gate.

Polarity
indicator

40

2-8. Integrated circuits

 An integrated circuit(IC) is a silicon semiconductor
crystal, called chip, containing the electronic
components for constructing digital gates.

Integrated
circuits

+V+V

+V

41

Levels of integration
1. Small-scale integration(SSI): the number of gates

is usually fewer than 10 and is limited by the
number of pins available in the IC.

2. Medium-scale integration(MSI): have a complexity
of approximately 10 to 1000 gates in a single
package, and usually perform specific elementary
digital operations.

Ex. Adders, multiplexers…(chapter 4), registers,
counters(chapter6).

42

Levels of integration
3. Large-scale integration(LSI): contain thousands of

gates in a single package.

Ex. Memory chips, processors.

4. Very large-scale integration(VLSI): contain
hundred of thousands of gates within a single
package.

Ex. Large memory arrays and complex
microcomputer chips.

43

Digital logic families
 The circuit technology is referred to as a digital

logic family.
 The most popular circuit technology:
1. TTL: transister-transister logic:

has been used for a long time and is considered as
standard; but is declining in use.

2. ECL: emitter-coupled logic:
has high-speed operation in system; but is declining
in use.

3. MOS: metal-oxide semiconductor:
has high component density.

44

Fan out & fan in

 CMOS: has low power consumption, essential for VLSI

design, and has become the dominant logic family.

 Fan out specifies the number of standard loads
that the output of a typical gate can drive without
impairing its normal operation.

 Fan in is the number of inputs available in a gate.

45

Power dissipation & Propagation
delay & Noise margin

 Power dissipation is the power consumed by the
gate that must be available from the power supply.

 Propagation delay is the average transition delay
time for the signal to propagate from input to
output.

 Noise margin is the maximum external noise
voltage added to an input signal that does not
cause an undesirable change in the circuit output.

46

Computer-Aided design (CAD)

 The design of digital systems with VLSI circuits are
very complexity to develop and verify with using
CAD tools.

 We can choose between an application specific
integrated circuit (ASIC), a field-programmable
gate array (FPGA), a programmable logic device
(PLD), or a full-custom IC.

 HDL is an important development tool in the
design of digital systems.

