(b)

(a)

The rod sets up an electric field, which can create a force
 at point P on the test charge.

Fig. 22-1 (a) A positive test charge q_{0} placed at point P near a charged object. An electrostatic force \vec{F} acts on the test charge. (b) The electric field \vec{E} at point P produced by the charged object.

hable esen

Some Electric Fields
Field Location
or Situation \quad Value (N/C)

At the surface of a uranium nucleus 3×10^{21}
Within a hydrogen atom, at a radius of $5.29 \times 10^{-11} \mathrm{~m}$ 5×10^{11}
Electric breakdown occurs in air 3×10^{6}
Near the charged drum of a photocopier
Near a charged comb 10^{3}
In the lower atmosphere $\quad 10^{2}$
Inside the copper wire of household circuits10^{-2}

ELECTRIC FIELDS

2

WHAT IS PHYSICS?

The physics of the preceding chapter tells us how to find the electric force on a particle 1 of charge $+q_{1}$ when the particle is placed near a particle 2 of charge $+q_{2}$. A nagging question remains: How does particle 1 "know" of the presence of particle 2? That is, since the particles do not touch, how can particle 2 push on particle 1-how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the magnitude and direction of the push on particle 1. Another purpose is to provide a deeper explanation of what is recorded. One purpose of this chapter is to provide such a deeper explanation to our nagging questions about electric force at a distance. We can answer those questions by saying that particle 2 sets up an electric field in the space surrounding itself. If we place particle 1 at any given point in that space, the particle "knows" of the presence of particle 2 because it is affected by the electric field that particle 2 has already set up at that point. Thus, particle 2 pushes on particle 1 not by touching it but by means of the electric field produced by particle 2 .

Our goal in this chapter is to define electric field and discuss how to calculate it for various arrangements of charged particles.

22-2 The Electric Field

The temperature at every point in a room has a definite value. You can measure the temperature at any given point or combination of points by putting a thermometer there. We call the resulting distribution of temperatures a temperature field. In much the same way, you can imagine a pressure field in the atmosphere; it consists of the distribution of air pressure values, one for each point in the atmosphere. These two examples are of scalar fields because temperature and air pressure are scalar quantities.

The electric field is a vector field; it consists of a distribution of vectors, one for each point in the region around a charged object, such as a charged rod. In principle, we can define the electric field at some point near the charged object, such as point P in Fig. 22-1a, as follows: We first place a positive charge q_{0}, called a test charge, at the point. We then measure the electrostatic force \vec{F} that acts on the test charge. Finally, we define the electric field \vec{E} at point P due to the charged object as

$$
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{0}} \quad \text { (electric field). } \tag{22-1}
\end{equation*}
$$

Thus, the magnitude of the electric field \vec{E} at point P is $E=F / q_{0}$, and the direction of \vec{E} is that of the force \vec{F} that acts on the positive test charge. As shown in Fig. 22-1b, we represent the electric field at P with a vector whose tail is at P. To define the electric field within some region, we must similarly define it at all points in the region.

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1 shows the electric fields that occur in a few physical situations.

Although we use a positive test charge to define the electric field of a charged object, that field exists independently of the test charge. The field at point P in Figure $22-1 b$ existed both before and after the test charge of Fig. 22-1 a was put there. (We assume that in our defining procedure, the presence of the test charge does not affect the charge distribution on the charged object, and thus does not alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged objects, we have two tasks: (1) calculating the electric field produced by a given distribution of charge and (2) calculating the force that a given field exerts on a charge placed in it. We perform the first task in Sections 22-4 through 22-7 for several charge distributions. We perform the second task in Sections 22-8 and $22-9$ by considering a point charge and a pair of point charges in an electric field. First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines

Michael Faraday, who introduced the idea of electric fields in the 19 th century, thought of the space around a charged body as filled with lines of force. Although we no longer attach much reality to these lines, now usually called electric field lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At any point, the direction of a straight field line or the direction of the tangent to a curved field line gives the direction of \vec{E} at that point, and (2) the field lines are drawn so that the number of lines per unit area, measured in a plane that is perpendicular to the lines, is proportional to the magnitude of \vec{E}. Thus, E is large where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive test charge anywhere near the sphere, an electrostatic force pointing toward the center of the sphere will act on the test charge as shown. In other words, the electric field vectors at all points near the sphere are directed radially toward the sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b, which point in the same directions as the force and field vectors. Moreover, the spreading of the field lines with distance from the sphere tells us that the magnitude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field vectors at all points near the sphere would be directed radially away from the sphere. Thus, the electric field lines would also extend radially away from the sphere. We then have the following rule:

Fig. 22-2 (a) The electrostatic force \vec{F} acting on a positive test charge near a sphere of uniform negative charge. (b) The electric field vector \vec{E} at the location of the test charge, and the electric field lines in the space near the sphere. The field lines extend toward the negatively charged sphere. (They originate on distant positive charges.)

[^0]Figure $22-3 a$ shows part of an infinitely large, nonconducting sheet (or plane) with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force \vec{F} on a positive test charge near a very large, nonconducting sheet with uniformly distributed positive charge on one side. (b) The electric field vector \vec{E} at the location of the test charge, and the electric field lines in the space near the sheet. The field lines extend away from the positively charged sheet. (c) Side view of (b).

(a)

(b)

(c)

Fig. 22-4 Field lines for two equal positive point charges. The charges repel each other. (The lines terminate on distant negative charges.) To "see" the actual three-dimensional pattern of field lines, mentally rotate the pattern shown here about an axis passing through both charges in the plane of the page. The three-dimensional pattern and the electric field it represents are said to have rotational symmetry about that axis. The electric field vector at one point is shown; note that it is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point charge and a nearby negative point charge that are equal in magnitude. The charges attract each other. The pattern of field lines and the electric field it represents have rotational symmetry about an axis passing through both charges in the plane of the page. The electric field vector at one point is shown; the vector is tangent to the field line through the point.

Fig. 22-6 The electric field vectors at various points around a positive point charge.

positive test charge at any point near the sheet of Fig. 22-3a, the net electrostatic force acting on the test charge would be perpendicular to the sheet, because forces acting in all other directions would cancel one another as a result of the symmetry. Moreover, the net force on the test charge would point away from the sheet as shown. Thus, the electric field vector at any point in the space on either side of the sheet is also perpendicular to the sheet and directed away from it (Figs. 22-3b and c). Because the charge is uniformly distributed along the sheet, all the field vectors have the same magnitude. Such an electric field, with the same magnitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infinitely large, but if we consider a region that is near the middle of a real sheet and not near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5 shows the pattern for two charges that are equal in magnitude but of opposite sign, a configuration that we call an electric dipole. Although we do not often use field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge

To find the electric field due to a point charge q (or charged particle) at any point a distance r from the point charge, we put a positive test charge q_{0} at that point. From Coulomb's law (Eq. 21-1), the electrostatic force acting on q_{0} is

$$
\begin{equation*}
\vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{0}}{r^{2}} \hat{\mathrm{r}} \tag{22-2}
\end{equation*}
$$

The direction of \vec{F} is directly away from the point charge if q is positive, and directly toward the point charge if q is negative. The electric field vector is, from Eq. 22-1,

$$
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r} \quad \text { (point charge) } \tag{22-3}
\end{equation*}
$$

The direction of \vec{E} is the same as that of the force on the positive test charge: directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q_{0}, Eq. $22-3$ gives the field at every point around the point charge q. The field for a positive point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net, or resultant, electric field due to more than one point charge. If we place a positive test charge q_{0} near n point charges $q_{1}, q_{2}, \ldots, q_{n}$, then, from Eq. 21-7, the net force \vec{F}_{0} from the n point charges acting on the test charge is

$$
\vec{F}_{0}=\vec{F}_{01}+\vec{F}_{02}+\cdots+\vec{F}_{0 n}
$$

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

$$
\begin{align*}
\vec{E} & =\frac{\vec{F}_{0}}{q_{0}}=\frac{\vec{F}_{01}}{q_{0}}+\frac{\vec{F}_{02}}{q_{0}}+\cdots+\frac{\vec{F}_{0 n}}{q_{0}} \\
& =\vec{E}_{1}+\vec{E}_{2}+\cdots+\vec{E}_{n} . \tag{22-4}
\end{align*}
$$

Here \vec{E}_{i} is the electric field that would be set up by point charge i acting alone. Equation 22-4 shows us that the principle of superposition applies to electric fields as well as to electrostatic forces.

CHECKPOINT 1

The figure here shows a proton p and an electron e on

an x axis. What is the direction of the electric field due to the electron at (a) point S and (b) point R ? What is the direction of the net electric field at (c) point R and (d) point S ?

Srinple Problem

Net electric field due to three charged particles

Figure 22-7a shows three particles with charges $q_{1}=+2 Q$, $q_{2}=-2 Q$, and $q_{3}=-4 Q$, each a distance d from the origin. What net electric field \vec{E} is produced at the origin?

rs=yliefea

Charges q_{1}, q_{2}, and q_{3} produce electric field vectors \vec{E}_{1}, \vec{E}_{2}, and \vec{E}_{3}, respectively, at the origin, and the net electric field is the vector sum $\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}$. To find this sum, we first must find the magnitudes and orientations of the three field vectors.

Magnitudes and directions: To find the magnitude of \vec{E}_{1}, which is due to q_{1}, we use Eq. 22-3, substituting d for r and $2 Q$ for q and obtaining

$$
E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} .
$$

Similarly, we find the magnitudes of \vec{E}_{2} and \vec{E}_{3} to be

Fig. 22-7 (a) Three particles with charges q_{1}, q_{2}, and q_{3} are at the same distance d from the origin. (b) The electric field vectors \vec{E}_{1}, \vec{E}_{2}, and \vec{E}_{3}, at the origin due to the three particles. (c) The electric field vector \vec{E}_{3} and the vector sum $\vec{E}_{1}+\vec{E}_{2}$ at the origin.

$$
E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} \quad \text { and } \quad E_{3}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}} .
$$

We next must find the orientations of the three electric field vectors at the origin. Because q_{1} is a positive charge, the field vector it produces points directly away from it, and because q_{2} and q_{3} are both negative, the field vectors they produce point directly toward each of them. Thus, the three electric fields produced at the origin by the three charged particles are oriented as in Fig. 22-7b. (Caution: Note that we have placed the tails of the vectors at the point where the fields are to be evaluated; doing so decreases the chance of error. Error becomes very probable if the tails of the field vectors are placed on the particles creating the fields.)

Adding the fields: We can now add the fields vectorially just as we added force vectors in Chapter 21. However, here we can use symmetry to simplify the procedure. From Fig. 22-7b, we see that electric fields \vec{E}_{1} and \vec{E}_{2} have the same direction. Hence, their vector sum has that direction and has the magnitude

$$
\begin{aligned}
E_{1}+E_{2} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}},
\end{aligned}
$$

which happens to equal the magnitude of field \vec{E}_{3}.
We must now combine two vectors, \vec{E}_{3} and the vector sum $\vec{E}_{1}+\vec{E}_{2}$, that have the same magnitude and that are oriented symmetrically about the x axis, as shown in Fig. $22-7 c$. From the symmetry of Fig. 22-7c, we realize that the equal y components of our two vectors cancel (one is upward and the other is downward) and the equal x components add (both are rightward). Thus, the net electric field \vec{E} at the origin is in the positive direction of the x axis and has the magnitude

$$
\begin{aligned}
E & =2 E_{3 x}=2 E_{3} \cos 30^{\circ} \\
& =(2) \frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}}(0.866)=\frac{6.93 Q}{4 \pi \varepsilon_{0} d^{2}} .
\end{aligned}
$$

(Answer)

[^0]: - Electric field lines extend away from positive charge (where they originate) and toward negative charge (where they terminate).

