
CSE 271 — Introduction to Digital Systems
Supplementary Reading

Representation of Signed Numbers

There are many ways to represent signed numbers. Typically the MSB of a bit string is used to represent
the sign (the sign bit). Since the MSB is used to indicate the sign (0=plus, 1=minus), an n-bit number can
only represent nonnegative numbers from 0 to 2n−1 − 1 (instead of 0 to 2n − 1 as for unsigned numbers).

To ease the implementation of subtraction using digital circuits, we would also impose

Requirement A: The subtraction N1−N2 can be carried out by the addition of the two numbers N1 and
(−N2). �

Here the addition is carried out similarly to that of unsigned numbers. If the Requirement A is satisfied
by the representation, then in designing a digital system, subtraction circuits need not be separately designed
once the addition circuits are available.

Let us look at the following candidate representations for signed numbers.

Signed-Magnitude Representation

In the signed-magnitude representation, a number consists of a magnitude string and a symbol indicating
the sign of the number. The sign symbol is at the MSB. The rest of the bits form the magnitude and are
interpreted similarly to unsigned numbers. For example, the 4-bit words 01102 = 610, 11012 = −510. Now
consider 6−5. Direct subtraction yields 0110−0101 = 0001. However, if we express it as 6+(−5) and carry
out the addition, we have 0110 + 1101 = 10011 and so the 4-bit sum word is 0011 (due to the 4-bit word
length). Since 0011 �= 0001, the Requirement A is not satisfied.

1’s Complement Representation

In the 1’s complement representation, a nonnegative number is represented in the same manner as an
unsigned number. A negative number (−N) is represented by the 1’s complement of the positive number
N . The 1’s complement of an n-bit number N is obtained by complementing each bit of N (or equivalently,
by subtracting it from 2n − 1). For example, the 4-bit words 01102 = 610, 01012 = 510, and 10102 = −510.
Now consider 6− 5. Direct subtraction yields 0110− 0101 = 0001. However, if we express it as 6 + (−5) and
carry out the addition, we have 0110 + 1010 = 10000 and so the 4-bit sum word is 0000 (due to the 4-bit
word length). Since 0000 �= 0001, the Requirement A is not satisfied.

2’s Complement Representation

Now we introduce the 2’s complement representation which satisfies the Requirement A. Due to this reason,
it is the most commonly used representation for signed binary numbers. In the the 2’s complement number
system, we have the following representations.

Nonnegative Numbers: Represented in the same manner as an unsigned number.

Negative Numbers: A negative number (−N) is represented by 2’s complement of the positive number N .

The 2’s complement of an n-bit number N is obtained by subtracting it from 2n. Note 2n − N =[
(2n − 1)−N

]
+ 1 and the operation

[
(2n − 1)−N

]
entails the complementing of each bit of N . So the 2’s

complement of N can simply be obtained by complementing each bit of N and then adding 1. The followings
are some examples of 2’s complement representations.

Examples. The 2’s complement representation of the decimal number 6 is 0110. The 2’s complement
representation of −6 is obtained by the following procedure.

1

10

 6

1010 =

1
1001

+

= 0110
complement bits

−6

10

Note that the MSB 1 indicates that 1010 represents a negative number. �

In fact, the 2’s complement number system negates a number by taking its 2’s complement. So the
complement operation can also be applied to a negative number representation to obtain the corresponding
positive number representation1. For example

 −6

1+

complement bits

10

10 = 1010
0101

0110 = 6

Remarks.

(a) Given a word size of n bits, the range of 2’s complement binary numbers is −2n−1 through 2n−1 − 1.

(b) The 2’s complement of an n-bit all 0 string is itself.

(c) The 2’s complement of an n-bit string with all 0’s except for the MSB being 1 is itself. For example, the
complement of a 4-bit word 1000 is 1000 and it represents −23 = −8 and has no positive counterpart
(since 8 is not with the range). �

Decimal Equivalent Values for 2’s Complement Binary Numbers. Given a binary number in 2’s
complement representation, there are two methods for determining its decimal equivalent value.

Method 1: If the MSB is 0, then the number is nonnegative and its value can be determined similarly to
an unsigned number. If the MSB is 1, then the number is negative and its absolute value can be
determined by taking the 2’s complement of the given negative number. For example, given a 4-bit
number N = 1101. We apply the following procedure to determine the 2’s complement of N (i.e., the
negation of N).

(2’s complement of N)

1+

complement bits

10

= 1101
0010

0011 = 3

 N

Hence the decimal value of N is −310, i.e., 11012 = −310.

Method 2: The decimal value for an n-bit 2’s complement binary number is computed the same way as for
an unsigned number using the formula of weighted summation of powers of 2, except that the power
term corresponding to the MSB is (−2n−1) instead of 2n−1. For example, the decimal value of the
4-bit number N = 1101 can be computed as

N = 1 × (−23) + 1 × 22 + 0 × 21 + 1 × 20 = −310

The justification of Method 2 is given in the footnote2.
1To justify this, note that the 2’s complement representation of an n-bit negative number (−N) is given by 2n−N .

Now take the 2’s complement of 2n−N yields 2n−(2n−N) = N . This is equivalent to saying that the 2’s complement

of the representation of (−N) gives us the representation of the corresponding positive number N .
2For positive numbers, the MSB is 0 so it has no contribution in evaluating the value. While for a negative number

(−N), its 2’s complement representation is the unsigned binary representation for D = 2n−N . Since the decimal value

for D as an unsigned number is D =
Pn−1

i=0 di·2i with dn−1 = 1, we then have −N = D−2n = 1×(−2n−1)+
Pn−2

i=0 di·2i.

2

Sign Extensions. When dealing with hardware, we often need to increase the number of bits required to
represent a signed number. In general, to extend an n-bit number to an m-bit number (m > n) which has
the same decimal value, we simply pad the given n-bit number with (m− n) copies of its MSB to its left to
form the corresponding m-bit number. For example, given a 4-bit number 11102 = −210, we can extend it
to an equivalent 8-bit number 111111102 = −210. Similarly, we can extend 00112 = 310 to 000000112 = 310.

Comparison of Different Representations

Now let us compare the aforementioned three representations by studying the following table for 4-bit
numbers.

Decimal 2’s Complement 1’s Complement Signed-Magnitude
7 0111 0111 0111
6 0110 0110 0110
5 0101 0101 0101
4 0100 0100 0100
3 0011 0011 0011
2 0010 0010 0010
1 0001 0001 0001
0 0000 0000 or 1111 0000 or 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000 — —

From the above table, it can be observed why the 2’s complement is preferred for arithmetic operations.
If we start with 10002 (−810) and count up, we see that each successive 2’s complement number all the way
to 01112 (710) can be obtained by adding 1 to the previous one, ignoring any carries beyond the fourth bit
position. The same cannot be said of signed-magnitude and 1’s complement numbers. Because ordinary
addition is just an extension of counting, 2’s complement numbers can thus be added by ordinary binary
addition, ignoring any carries beyond the MSB. The result will always be the correct sum as long as the
range of the number system is not exceeded. This helps explain why the Requirement A is satisfied by
2’s complement numbers. Moreover, note that the range of 2’s complement numbers is larger than that of
signed-magnitude and 1’s complement (for which 010 has 2 representations).

2’s Complement Addition and Subtraction

Since 2’s complement numbers satisfy the Requirement A mentioned at the beginning of this handout, we
only need to consider the addition of 2’s complement numbers. As we have mentioned, 2’s complement
numbers can thus be added by ordinary binary addition. Some examples are given on the next page.

In Examples (e) and (f), the result is incorrect since the decimal value of the sum exceeds the range of
4-bit 2’s complement number system. In such cases, overflow is said to occur. As can be observed from the
examples, in general, the addition of 2’s complement numbers has the following properties.

(a) Addition of two numbers with different signs can never produce overflow and thus the result is always
correct (ignoring the carries beyond the MSB). Such is the case for Examples (a) and (b).

3

(b) An addition overflows if the two addends’ signs are the same, but the sum’s sign is different from the
addends. Such is the case for Examples (e) and (f). In Examples (c) and (d), the sums have the same
sign as the addends, so the results are correct.

(c) Finally, here is an easy method to determine whether overflow occurs: overflow occurs if and only if
the carry bit cin into and cout out of the sign position (i.e., the MSB) are different. Such is the case
for Examples (e) and (f).

−5

+ +

corresp.
dec. oper.

correct result

0100
1001

 1101 = −3

+4

−3

Example (b)

+ +

corresp.
dec. oper.

correct result

Example (c)

+3
+4

+7 +7 0111 =

0100
0011

+ +

corresp.
dec. oper.

correct result

Example (d)

1110
1010

11000 = −8 −8

−2
−6

1 11

+

1

+

corresp.
dec. oper.

+ +

corresp.
dec. oper.

Example (e) Example (f)

−3
−6

−9

+5
+6

+11 +710111 =

1101
1010

incorrect result incorrect result

0101
0110

 1011 =

+
0110
1101

10011 =

1 1

+3 +3

+6
+

corresp.
dec. oper.

Example (a)

correct result

−3 −7

1

4

