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3.1 The multiple linear regression model 

The simple linear regression model is not adequate for modeling many economic 
phenomena, because in order to explain an economic variable it is necessary to take into 
account more than one relevant factor. We will illustrate this with some examples. 

In the Keynesian consumption function, disposable income is the only relevant 
variable: 

 1 2cons inc u     (3-1) 

However, there are other factors that may be considered relevant in consumer 
behavior. One of these factors could be wealth. By including this factor, we will have a 
model with two explanatory variables: 

 1 2 3cons inc wealth u       (3-2) 

In the analysis of production, a potential function is often used, which can be 
transformed into a linear model in the parameters with an adequate specification (taking 
natural logs). Using a single input -labor- a model of this type would be specified as 
follows: 

 1 2ln( ) ln( )output labor u     (3-3) 

The previous model is clearly insufficient for economic analysis. It would be 
better to use the well-known Cobb-Douglas model that considers two inputs (labor and 
capital): 
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 1 2 3ln( ) ln( ) ln( )output labor capital u       (3-4) 

According to microeconomic theory, total costs (costot) are expressed as a 
function of the quantity produced (quantprod). A first approximation to explain the total 
costs could be a model with only one regresor: 

 1 2costot quantprod u     (3-5) 

However, it is very restrictive considering that, as would be the case with the 
previous model, the marginal cost remains constant regardless of the quantity produced. 
In economic theory, a cubic function is proposed, which leads to the following 
econometric model: 

 2 3
1 2 3 4costot quantprod quantprod quantprod u         (3-6) 

In this case, unlike the previous ones, only one explanatory variable is 
considered, but with three regressors. 

Wages are determined by several factors. A relatively simple model could 
explain wages using years of education and years of experience as explanatory 
variables: 

 1 2 3wages educ exper u       (3-7) 

Other important factors to explain wages received can also be quantitative 
variables such as training and age, or qualitative variables, such as sex, industry, and so 
on.  

Finally, in explaining the expenditure on fish relevant factors are the price of 
fish, the price of a substitutive commodity such as meat, and disposable income: 

 1 2 3 4fishexp fishprice meatprice income u         (3-8) 

Thus, the above examples highlight the need for using multiple regression 
models. The econometric treatment of the simple regression model was made with 
ordinary algebra. The treatment of an econometric model with two explanatory 
variables by using ordinary algebra is tedious and cumbersome. Moreover, a model with 
three explanatory variables is virtually intractable with this tool. For this reason, the 
regression model will be presented using matrix algebra.  

3.1.1 Population regression model and population regression function 

In the model of multiple linear regression, the regressand (which can be either 
the endogenous variable or a transformation of the endogenous variables) is a linear 
function of k regressors corresponding to the explanatory variables -or their 
transformations - and of a random disturbance or error. The model also has an intercept. 
Designating the regressand by y, the regressors by x2, x3,..., xk and the disturbance –or 
the random disturbance- by u, the population model of multiple linear regression is 
given by the following expression:  

 1 2 2 3 3 +k ky x x x u         (3-9) 

The parameters 1 2 3, , , , k     are fixed and unknown. 
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On the right hand of (3-9) we can distinguish two parts: the systematic 
component 1 2 2 3 3 k kx x x        and the random disturbance u. Calling y to the 

systematic component, we can write: 

 1 2 2 3 3y k kx x x          (3-10) 

This equation is known as the population regression function (PRF) or 
population hyperplane. When k=2 the PRF is specifically a straight line; when k=3 the 
PRF is specifically a plane; finally, when k>3 the PRF is generically denominated 
hyperplane. This cannot to be represented in a three dimension space. 

According to (3-10), y is a linear function of the parameters 1 2 3, , , , k    . 

Now, let us suppose we have a random sample of size n 

2 3{(  , , , , ) :    1, 2, , }i i i kiy x x x i n   extracted from the population studied. If we write 

the population model for all observations of the sample, the following system is 
obtained: 
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The previous system of equations can be expressed in a compact form by using 
matrix notation. Thus, we are going to denote 
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The matrix X is called the matrix of regressors. Also included among the 
regressors is the regressor corresponding to the intercept. This one, which is often called 
dummy regressor, takes the value 1 for all the observations.  

The model of multiple linear regression (3-11) expressed in matrix notation is 
the following: 
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 (3-12) 

If we take into account the denominations given to vectors and matrices, the 
model of multiple linear regression can be expressed in the following way: 

 y = X + u  (3-13) 

where y is a vector 1n , X is a matrix n k ,  is a vector 1k   and u is a vector 1n .  
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3.1.2 Sample regression function 

The basic idea of regression is to estimate the population parameters, 

1 2 3, , , , k    from a given sample. 

The sample regression function (SRF) is the sample counterpart of the 
population regression function (PRF). Since the SRF is obtained for a given sample, a 
new sample will generate different estimates. 

The SRF, which is an estimation of the PRF, is given by  

 1 2 2 3 3
ˆ ˆ ˆ ˆˆ          1,2, ,i i i k kiy x x x i n           (3-14) 

The above expression allows us to calculate the fitted value ( ˆiy ) for each yi. In 

the SRF 1 2 3
ˆ ˆ ˆ ˆ, , , , k     are the estimators of the parameters 1 2 3, , , , k    . 

We call residual to the difference between  and . That is 

 1 2 2 3 3
ˆ ˆ ˆ ˆˆ ˆi i i i i i k kiu y y y x x x            (3-15) 

In other words, the residual ˆiu  is the difference between a sample value and its 

corresponding fitted value. 

The system of equations (3-14) can be expressed in a compact form by using 
matrix notation. Thus, we are going to denote 
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For all observations of the sample, the corresponding fitted model will be the 
following:  

 ˆŷ = X  (3-16) 

The residual vector is equal to the difference between the vector of observed 
values and the vector of fitted values, that is to say,  

 ˆˆ ˆu y - y = y - X  (3-17) 

3.2 Obtaining the OLS estimates, interpretation of the coefficients, and other 
characteristics  

3.2.1 Obtaining the OLS estimates  

Denoting S to the sum of the squared residuals,  
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to apply the least squares criterion in the model of multiple linear regression, we 

calculate the first derivative from S with respect to each ˆ
j  in the expression (3-18): 
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 (3-19) 

The least square estimators are obtained equaling to 0 the previous derivatives: 
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or, in matrix notation, 

 ˆ X X X y    (3-21) 

The previous equations are denominated generically hyperplane normal 
equations.  

In expanded matrix notation, the system of normal equations is the following: 
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 (3-22) 

Note that:  

a) / nX X  is the matrix of second order sample moments with respect to the origin, of 
the regressors, among which a dummy regressor (x1i) associated to the intercept is 
included. This regressor takes the value x1i=1 for all i. 
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b)  / nX y  is the vector of sample moments of second order, with respect to the 
origin, between the regressand and the regressors.  

In this system there are k equations and k unknown 1 2 3
ˆ ˆ ˆ ˆ( , , , , )k    . This 

system can easily be solved using matrix algebra. In order to solve univocally the 

system  (3-21)with respect to ̂ , it must be held that the rank of the matrix X X  is 

equal to k. If this is held, both members of (3-21) can be premultiplied by   1X X : 

   1 1ˆ    X X X X X X X y    

with which the expression of the vector of least square estimators, or more precisely, the 

vector of ordinary least square estimators (OLS), is obtained because   1  X X X X I . 

Therefore, the solution is the following: 
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 (3-23) 

Since the matrix of second derivatives, 2 X X , is a positive definite matrix, the 

conclusion is that S presents a minimum in ̂ . 

3.2.2 Interpretation of the coefficients 

A ˆ
j  coefficient measures the partial effect of the regressor xj on y holding the 

other regressors fixed. We will see next the meaning of this expression. 

The fitted model for observation i is given by 

 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆˆi i i j ji k kiy x x x x             (3-24) 

Now, let us consider the fitted model for observation h in which the values of 
the regressors and, consequently, y will have changed with respect to (3-24): 

 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆˆh h h j jh k khy x x x x             (3-25) 

Subtracting (3-25) from (3-24), we have 

 2 2 3 3
ˆ ˆ ˆ ˆˆ j j k ky x x x x                (3-26) 

where 2 2 2 3 3 3ˆ ˆ ˆ , , ,i h i h i h k ki khy y y x x x x x x x x x            . 

The previous expression captures the variation of ŷ  due to the changes in all 
regressors. If only xj changes, we will have  

 ˆˆ j jy x    (3-27) 

If xk increases in one unit, we will have 

 ˆˆ     for  1j jy x     (3-28) 
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Consequently, the coefficient ˆ
j  measures the change in y when xj increases in 

1 unit, holding the regressors 2 3 1 1, , , , , ,j j kx x x x x    fixed. It is very important to take 

into account this ceteris paribus clause when interpreting the coefficient.  

This interpretation is not valid, of course, for the intercept. 

EXAMPLE 3.1 Quantifying the influence of age and wage on absenteeism in the firm Buenosaires 

Buenosaires is a firm devoted to manufacturing fans, having had relatively acceptable results in 
recent years. The managers consider that these would have been better if the absenteeism in the company 
were not so high. For this purpose, the following model is proposed: 

1 2 3 4absent age tenure wage u         

where absent is measured in days per year; wage in thousands of euros per year; tenure in years in the 
firm and age is expressed in years. 

Using a sample of size 48 (file absent), the following equation has been estimated: 


(1.603) (0.048) (0.067) (0.007)

14.413 0.096 0.078 0.036absent   age  tenure  wage = - - -  

R2=0.694       n =48 

The interpretation of 2̂  is the following: holding fixed tenure and wage, if age increases by one 

year, worker absenteeism will be reduced by 0.096 days per year. The interpretation of 3̂  is as follows: 

holding fixed the age and wage, if the tenure increases by one year, worker absenteeism will be reduced 

by 0.078 days per year. Finally, the interpretation of 4̂  is the following: holding fixed the age and 

tenure, if the wage increases by 1000 euros per year, worker absenteeism will be reduced by 0.036 days 
per year. 

EXAMPLE 3.2 Demand for hotel services  

The following model is formulated to explain the demand for hotel services:   

 ( ) 1 2 3ln ln( )hostel inc hhsize u b b b+ + +  (3-29) 

where hostel is spending on hotel services, inc is disposable income, both of which are expressed in euros 
per month. The variable hhsize is the number of household members.  

The estimated equation with a sample of 40 households, using file hostel, is the following: 

ln( ) 27.36 4.442 ln( ) 0.523i i ihostel inc hhsize - + -
 

R2=0.738     n=40

 

As the results show, hotel services are a luxury good. Thus, the demand/income elasticity for this 
good is very high (4.44), which is typical of luxury goods. This means that if income increases by 1%, 
spending on hotel services increases by 4.44%, holding fixed the size of the household. On the other 
hand, if the household size increases by one member, then spending on hotel services will decrease by 
52%. 

EXAMPLE 3.3 A hedonic regression for cars 

The hedonic model of price measurement is based on the assumption that the value of a good is 
derived from the value of its characteristics. Thus, the price of a car will therefore depend on the value the 
buyer places on both qualitative (e.g. automatic gear, power, diesel, assisted steering, air conditioning), 
and quantitative attributes (e.g. fuel consumption, weight, performance displacement, etc.). The data set 
for this exercise is file hedcarsp (hedonic car price for Spain) and covers years 2004 and 2005. A first 
model based only on quantitative attributes is the following:  

1 2 3ln( )price volume fueleff u       

where volume is length×width×height in m3 and fueleff is the liters per 100 km/horsepower ratio 
expressed as a percentage. 

The estimated equation with a sample of 214 observations is the following: 

ln( ) 4.97 0.0956 0.1608i i iprice volume fueleff  + -
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R2=0.765    n=214

 

The interpretation of 2̂  and 3̂  is the following. Holding fixed fueleff, if volume increases by 1 

m3, the price of a car will rise by 9.56%. Holding fixed volume, if the ratio liters per 100 km/horsepower 
increases by 1 percentage point, the price of a car price will fall by 16.08%. 

EXAMPLE 3.4 Sales and advertising: the case of Lydia E. Pinkham  

A model with time series data is estimated in order to measure the effect of advertising expenses, 
realized over different time periods, on current sales. Denoting by Vt and Pt sales and advertising 

expenditures, made at time t, the model proposed initially to explain sales, as a function of current and 
past advertising expenses is as follows: 

 1 2 1 3 2t t t t tV P P P u           (3-30) 

In the above expression the dots indicate that past expenditure on advertising continues to have 
an indefinite influence, although it is assumed that with a decreasing impact on sales. The above model is 
not operational given that it has an indefinite number of coefficients. Two approaches can be adopted in 
order to solve the problem. The first approach is to fix a priori the maximum number of periods during 
which advertising effects on sales are maintained. In the second approach, the coefficients behave 
according to some law which determines their value based on a small number of parameters, also 
allowing further simplification. 

In the first approach the problem that arises is that, in general, there are no precise criteria or 
sufficient information to fix a priori the maximum number of periods. For this reason, we shall look at a 
special case of the second approach that is interesting due to the plausibility of the assumption and easy 
application. Specifically, we will consider the case in which the coefficients i decrease geometrically as 
we move backward in time according to the following scheme: 

 1           0 1i
i i        (3-31) 

The above transformation is called Koyck transformation, as it was this author who in 1954 
introduced scheme (3-31) for the study of investment 

Substituting (3-31) in (3-30), we obtain 

 2
1 1 1 1 2t t t t tV P P P u             (3-32) 

The above model still has infinite terms, but only three parameters and can also be simplified. 
Indeed, if we express equation (3-32) for period t-1 and multiply both sides by  we obtain 

 2 3
1 1 1 1 2 1 3 1t t t t tV P P P u                   (3-33) 

Subtracting (3-33) from (3-32), and taking into account factors i tend to 0 as i tends to infinity, 
the result is the following: 

 1 1 1(1 )t t t t tV P V u u            (3-34) 

The model has been simplified so that it only has three regressors, although, in contrast, it has 
moved to a compound disturbance term. Before seeing the application of this model, we will analyze the 
significance of the coefficient  and the duration of the effects of advertising expenditures on sales. The 
parameter  is the decay rate of the effects of advertising expenditures on current and future sales. The 
cumulative effects that the advertising expenditure of one monetary unit have on sales after m periods are 
given by 

 2 3
1(1 )m          (3-35) 

To calculate the cumulative sum of effects, given in (3-35), we note that this expression is the 
sum of the terms of a geometric progression1, which can be expressed as follows: 

                                                 
1 Denoting by ap, au and r the first term, the last term and the right respectively, the sum of the 

terms of a convergent geometric progression is given by  



9 

 1(1 )

1

m 




 (3-36) 

When m tends to infinity, then the sum of the cumulative effects is given by 

 1

1




 (3-37) 

An interesting point is to determine how many periods of time are required to obtain the p% 
(e.g., 50%) of the total effect. Denoting by h the number of periods required to obtain this percentage, we 
have 

 

1

1

(1 )
Effect in  periods 1 1

Total effect
1

h

hh
p

 
 





   



 (3-38) 

Setting p, h can be calculated according to (3-38). Solving for h in this expression, the following 
is obtained  

 
ln(1 )

ln

p
h




  (3-39) 

This model was used by Kristian S. Palda in his doctoral thesis published in 1964, entitled The 
Measurement of Cumulative Advertising Effects, to analyze the cumulative effects of advertising 
expenditures in the case of the company Lydia E. Pinkham. This case has been the basis for research on 
the effects of advertising expenditures. We will see below some features of this case: 

1) The Lydia E. Pinkham Medicine Company manufactured a herbal extract diluted in an alcohol 
solution. This product was originally announced as an analgesic and also as a remedy for a wide variety 
of diseases. 

2) In general, in different types of products there is often competition among different brands, as 
in the paradigmatic case of Coca-Cola and Pepsi-Cola. When this occurs, the behavior of the main 
competitors is taken into account when analyzing the effects of advertising expenditure. Lydia E. 
Pinkham had the advantage of having no competitors, acting as a monopolist in practice in its product 
line. 

3) Another feature of the Lydia E. Pinkham case was that most of the distribution costs were 
allocated to advertising because the company had no commercial agents, with the relationship between 
advertising expenses and sales being very high. 

4) The product was affected by different avatars. Thus, in 1914 the Food and Drug 
Administration (United States agency established controls for food and medicines) accused the firm of 
misleading advertising and so they had to change their advertising messages. Also, the Internal Revenue 
(IRS) threatened to apply a tax on alcohol since the alcohol content of the product was 18%. For all these 
reasons there were changes in the presentation and content during the period 1915-1925. In 1925 the Food 
and Drug Administration banned the product from being announced as medicine, having to be distributed 
as a tonic drink. In the period 1926-1940 spending on advertising was significantly increased and shortly 
after the sales of the product declined. 

The estimation of the model (3-34) with data from 1907 to 1960, using file pinkham, is the 
following: 


1138.7 0.3288 0.7593t tsales advexp sales -= + +  

R2=0.877     n=53 

The sum of the cumulative effects of advertising expenditures on sales is calculated by the 
formula (3-37): 

                                                                                                                                               

1
p ua a

r




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1̂ 0.3288
1.3660

ˆ 1 0.75931



 


 

According to this result, every additional dollar spent on advertising produces an accumulated 
total sale of 1,366 units. Since it is important not only to determine the overall effect, but also how long 
the effect lasts, we will now answer the following question: how many periods of time are required to 
reach half of the total effects? Applying the formula (3-39) for the case of p = 0.5, the following result is 
obtained: 

ln(1 0.5)ˆ(0.5) 2.5172
ln(0.7593)

h


   

3.2.3 Algebraic implications of the estimation 

The algebraic implications of the estimation are derived exclusively from the 
application of the OLS method to the model of multiple linear regression:  

1. The sum of the OLS residuals is equal to 0:  

 
1

ˆ 0
n

i
i

u


  (3-40) 

From the definition of residual  

 1 2 2
ˆ ˆ ˆˆ ˆ         1,2, ,i i i i i k kiu y y y x x i n            (3-41) 

If we add for the n observations, then  

 1 2 2
1 1 1 1

ˆ ˆ ˆˆ
n n n n

i i i k ki
i i i i

u y n x x  
   

         (3-42) 

On the other hand, the first equation of the system of normal equations (3-20) is  

 1 2 2
1 1 1

ˆ ˆ ˆ 0
n n n

i i k ki
i i i

y n x x  
  

        (3-43) 

If we compare (3-42) and (3-43), we conclude that (3-40) holds. 

Note that, if (3-40) holds, it implies that  

 
1 1

ˆ
n n

i
i i

y y
 

   (3-44) 

and, dividing (3-40) and (3-44) by n, we obtain 

        ˆ 0u       ˆy y  (3-45) 

2. The OLS hyperplane always goes through the point of the sample means

 2, , , ky x x .  

By dividing equation (3-43) by n we have:  

 1 2 2
ˆ ˆ ˆ

k ky x x       (3-46) 

3. The sample cross product between each one of the regressors and the OLS 
residuals is zero  
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1

ˆ 0                   2,3, ,
n

ji i
i

x u j k


 =   (3-47) 

Using the last k normal equations (3-20) and taking into account that by 

definition 1 2 2 3 3
ˆ ˆ ˆ ˆˆí i i i k kiu y x x x         , we can see that  

 

2
1

3
1

1

ˆ 0

ˆ 0

         

ˆ 0

n

i i
i

n

i i
i

n

i ki
i

u x

u x

u x



















 
 (3-48) 

4. The sample cross product between the fitted values ( ŷ ) and the OLS 
residuals is zero. 

 
1

ˆ ˆ 0
n

i í
i

y u


  (3-49) 

Taking into account (3-40) and (3-48), we obtain 

 
1 2 2 1 2 2

1 1 1 1 1

1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ0 0 0 0

n n n n n

i í i k ki í í i í k ki í
i i i i i

k

y u x x u u x u x u     

  
    

      

      

     


 (3-50) 

3.3 Assumptions and statistical properties of the OLS estimators 

Before studying the statistical properties of the OLS estimators in the multiple 
linear regression model, we need to formulate a set of statistical assumptions. 
Specifically, the set of assumptions that we will formulate are called classical linear 
model (CLM) assumptions. It is important to note that CLM assumptions are simple, and 
that the OLS estimators have, under these assumptions, very good properties. 

3.3.1 Statistical assumptions of the CLM in multiple linear regression) 

a) Assumption on the functional form 

1) The relationship between the regressand, the regressors and the disturbance is linear 
in the parameters: 

 1 2 2 +k ky x x u       (3-51) 

or, alternatively, for all the observations, 

 y = Xβ + u  (3-52) 

b) Assumptions on the regressors 

2) The values of 2 3, , kx x x  are fixed in repeated sampling, or the matrix X is 

fixed in repeated sampling: 
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This is a strong assumption in the case of the social sciences where, in general, it 
is not possible to experiment. An alternative assumption can be formulated as follows: 

2*) The regressors 2 3, , , kx x x  are distributed independently of the random 

disturbance. Formulated in another way, X is distributed independently of the vector of 
random disturbances, which implies that (E X u) = 0  

As we said in chapter 2, we will adopt assumption 2). 

3) The matrix of regressors, X, does not contain disturbances of measurement 

4) The matrix of regressors, X, has rank k: 

 ( ) k X  (3-53) 

Recall that the matrix of regressors contains k columns, corresponding to the k 
regressors in the model, and n rows, corresponding to the number of observations. This 
assumption has two implications: 

1. The number of observations, n, must be equal to or greater than the number of 
regressors, k. Intuitively, to estimate k parameters, we need at least k observations. 

2. Each regressor must be linearly independent, which implies that an exact 
linear relationship among any subgroup of regressors cannot exist. If an independent 
variable is an exact linear combination of other independent variables, then there is 
perfect multicollinearity, and the model cannot be estimated. 

If an approximate linear relationship exists, then estimations of the parameters 
can be obtained, although the reliability of such estimations would be affected. In this 
case, there is non-perfect multicollinearity.  

c) Assumption on the parameters 

5) The parameters 1 2 3, , , , k     are constant, or  is a constant vector. 

d) Assumptions on the disturbances 

6) The disturbances have zero mean, 

   ( ) 0,       1, 2,3, ,iE u i n     or  ( )        E u 0  (3-54) 

7) The disturbances have a constant variance (homoskedasticity assumption): 

 2( )      1,2,ivar u i n    (3-55) 

8) The disturbances with different subscripts are not correlated with each other 
(no autocorrelation assumption): 

 ( ) 0          i jE u u i j   (3-56) 

The formulation of homoskedasticity and no autocorrelation assumptions allows 
us to specify the covariance matrix of the disturbance vector:  
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        

 

2
1 1 1 2 1

2
2 2 1 2 2

1 2

2
1 2

2
1 1 2 1

2
2 1 2 2

1

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) (

n

n
n

n n n n

n

n

n

E E E E E

u u u u u u

u u u u u u
E u u u E

u u u u u u

E u E u u E u u

E u u E u E u u

E u u E

u u u u u 0 u 0 u u                      
    
    
     
    
    

      








    







   

2

2

2 2
2

0 0

0 0

) ( ) 0 0n nu u E u






   
   
   
   
   
    





   

 

 (3-57) 

In order to get to the last equality, it has been taken into account that the 
variances of each one of the elements of the vector is constant and equal to 2  in 
accordance with (3-55) and the covariances between each pair of elements is 0 in 
accordance with (3-56). 

The previous result can be expressed in synthetic form: 

 
2( )E  uu  I  (3-58) 

The matrix given in (3-58) is denominated scalar matrix, since it is a scalar ( 2 , 
in this case) multiplied by the identity matrix. 

9) The disturbance u is normally distributed 

Taking into account assumptions 6 to 9, we have  

 2~ (0 )   1,2, ,iu NID i n ,         or        2~ ( )N u 0, I  (3-59) 

where NID stands for normally independently distributed. 

3.3.2 Statistical properties of the OLS estimator 

Under the above assumptions of the CLM, the OLS estimators possess good 
properties. In the proofs of this section, assumptions 3, 4 and 5 will implicitly be used. 

Linearity and unbiasedness of the OLS estimator  

Now, we are going to prove that the OLS estimator is linearly unbiased. First, 

we express β̂  as a function of the vector u, using assumption 1, according to (3-52): 

        ˆ -1 -1 -1
β = X X X y = X X X Xβ+ u = β+ X X X u       (3-60) 

The OLS estimator can be expressed in this way so that the property of linearity 
is clearer: 

  ˆ -1
β = β+ X X X u = β+ Au   (3-61) 

where  -1A = X X X   is fixed under assumption 2. Thus β̂  is a linear function of u and, 

consequently, it is a linear estimator. 

Taking expectations in (3-60) and using assumption 6, we obtain 
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    ˆE E
-1

β = β + X X X u = β      (3-62) 

Therefore, β̂  is an unbiased estimator. 

Variance of the OLS estimators 

In order to calculate the covariance matrix of β̂ assumptions 7 and 8 are needed, 
in addition to the  first six assumptions: 

        

     2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) ( ) ( )

( )

( )

E E E E

E E

E

-1 -1 -1 -1

-1 -1 -1

β = β β β β = β β β β

= X X X uu X X X = X X X uu X X X

= X X X I X X X = X X 

                  
         

   

 (3-63) 

In the third step of the above proof it is taken into account that, according to  

(3-60),  ˆ -1
β β = X X X u  . Assumption 2 is taken into account in the fourth step. 

Finally, assumptions 7 and 8 are used in the last step.  

Therefore,  2ˆvar( )
-1

β X X   is the covariance matrix of the vector β̂ . In this 

covariance matrix, the variance of each element ˆ
j  appears on the main diagonal, while 

the covariances between each pair of elements are outside of the main diagonal. 

Specifically, the variance of ˆ
j  (for j=2,3,…,k) is equal to 2 multiplied by the 

corresponding element of the main diagonal of  -1X X . After operating, the variance of 

ˆ
j  can be expressed as  

 
2

2 2
ˆvar( )

(1 )j
j jnS R

 


 (3-64) 

where 2
jR  is the R-squared from regressing xj on all other x’s, n is the sample size and 

2
jS  is the sample variance of the regressor X. 

Formula (3-64) is valid for all slope coefficients, but not for the intercept 

The square root of (3-64) is called the standard deviation of ˆ
j : 

 
2 2

ˆ( )
(1 )

j

j j

sd
nS R

 


 (3-65) 

OLS estimators are BLUE 

Under assumptions 1 through 8 of the CLM, which are called Gauss-Markov 
assumptions, the OLS estimators is the Best Linear Unbiased Estimators (BLUE).  

The Gauss Markov theorem states that the OLS estimator is the best estimator 
within the class of linear unbiased estimators. In this context, best means that it is an 
estimator with the smallest variance for a given sample size. Let us now compare the 

variance of an element of β̂  ( ˆ
j ), with any other estimator that is linear (so 
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1

n

j ij i
i

w y


 ) and unbiased (so the weights, wj, must satisfy some restrictions). The 

property of ˆ
j  being a BLUE estimator has the following implications when comparing 

its variance with the variance of j : 

1) The variance of the coefficient j  is greater than, or equal to, the variance of 

ˆ  j obtained by OLS: 

 ˆvar( ) var( )         j 1,2,3, ,j j k     (3-66) 

2) The variance of any linear combination of j ´s is greater than, or equal to, 

the variance of the corresponding linear combination of ˆ
j ’s. 

In appendix 3.1 the proof of the theorem of Gauss-Markov can be seen. 

Estimator of the disturbance variance 

Taking into account the system of normal equations (3-20), if we know n–k of 
the residuals, we can get the other k residuals by using the restrictions imposed by that 
system in the residuals. 

For example, the first normal equation allows us to obtain the value of ˆnu  as a 

function of the remaining residuals: 

1 2 1ˆ ˆ ˆ ˆn nu u u u       

Thus, there are only n–k degrees of freedom in the OLS residuals, as opposed to 
n degrees of freedom in the disturbances. Remember that the degree of freedom is 
defined as the difference between the number of observations and the number of 
parameters estimated. 

The unbiased estimator of 2  is adjusted taken into account the degree of 
freedom: 

 

2

2 1

ˆ
ˆ

n

i
i

u

n k
 




 (3-67) 

Under assumptions 1 to 8, we obtain  

 2 2ˆ( )E    (3-68) 

See appendix 3.2 for the proof. 

The square root of (3-67), ̂  is called standard error of the regression and is an 
estimator of  .  

Estimators of the variances of β̂  and the slope coefficient ˆ
j  

The estimator of the covariance matrix of β̂  is given by 
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   

   

   

  



1 1 2 1 1
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1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) var( ) ( , ) ( , )

ˆ ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) var( ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ,

j k

j k

j j j j k

k k k

Cov Cov Cov

Cov Cov Cov

Var
Cov Cov Cov

Cov Cov Cov

      

      


      

    

 X X

 

 
     

 
     





 ˆ ˆ) var( )j k 

 
 
 
 
 
 
 
 
 
 
  

 (3-69) 

The variance of the slope coefficient ˆ
j , given in (3-64), is a function of the 

unknown parameter 2 . When 2  is substituted by its estimator 2̂ , an estimator of the 

variance of ˆ
j  is obtained:  

  2

2 2

ˆˆvar( )
(1 )j

j jnS R

 


 (3-70) 

According to the previous expression, the estimator of the variance ˆ
j  

is 

affected by the following factors: 

a) The greater 2̂ , the greater the variance of the estimator. This is not at 
all surprising: more “noise” in the equation - a larger 2̂ - makes it more 
difficult to estimate accurately the partial effect of any x’s on y. (See 
figure 3.1).  

b) As sample size increases, the variance of the estimator is reduced.  

c) The smaller the sample variance of a regressor, the greater the variance 
of the corresponding coefficient. Everything else being equal, for 
estimating j we prefer to have as much sample variation in xj as 

possible, which is illustrated in figure 3.2. As you can see, there are 
many hypothetical lines that could fit the data when the sample variance 
of xj  (

2
jS ) is small, which can be seen in part a) of the figure. In any 

case, assumption 4 does not allow 2
jS  being equal to 0.  

d) The higher 2
jR , (i.e., the higher is the correlation of regressor j with the 

rest of the regressors), the greater the variance of ˆ
j . 



17 

 
   a) 2ŝ  big   b) 2ŝ  small 

FIGURE 3.1. Influence of 
2ŝ  on the estimator of the variance. 

 
   a) 2

jS
 
small   b) 2

jS  big 

FIGURE 3.2. Influence of 2
jS  on the estimator of the variance. 

The square root of (3-70) is called the standard error of ˆ
j : 

 
2 2

ˆˆ( )
(1 )

j

j j

se
nS R

 


 (3-71) 

Other properties of the OLS estimators 

Under 1 through 6 CLM assumptions, the OLS estimator β̂  is consistent, as can 
be seen in appendix 3.3, asymptotically normally distributed and also asymptotically 
efficient within the class of the consistent and asymptotically normal estimators.  

Under 1 through 9 CLM assumptions, the OLS estimator is also the maximum 
likelihood estimator (ML), as can be seen in appendix 3.4, and the minimum variance 
unbiased estimator (MVUE). This means that the OLS estimator has the smallest 
variance among all unbiased, linear o non linear, estimators.  

3.4 More on functional forms 

In this section we will examine two topics on functional forms: use of natural 
logs in models and polynomial functions.  

3.4.1 Use of logarithms in the econometric models 

Some variables are often used in log form. This is the case of variables in 
monetary terms which are generally positive or variables with high values such as 
population. Using models with log transformations also has advantages, one of which is 
that coefficients have appealing interpretations (elasticity or semi-elasticity). Another 
advantage is the invariance of slopes to scale changes in the variables. Taking logs is 
also very useful because it narrows the range of variables, which makes estimates less 
sensitive to extreme observations on the dependent or the independent variables. The 
CLM assumptions are satisfied more often in models using ln(y) as a regressand than in 

xj xj

y y

y y

xj xj
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models using y without any transformation. Thus, the conditional distribution of y is 
frequently heteroskedastic, while ln(y) can be homoskedastic.  

One limitation of the log transformation is that it cannot be used when the 
original variable takes zero or negative values. On the other hand, variables measured in 
years and variables that are a proportion or a percentage, are often used in level (or 
original) form. 

3.4.2 Polynomial functions  

The polynomial functions have been extensively used in econometric research. 
When there are only the regressors corresponding to a polynomial function we have a 
polynomial model. The general kth degree polynomial model may be written as 

 2
1 2 3 + +k

ky x x x u        (3-72) 

Quadratic functions 

An interesting case of polynomial functions is the quadratic function, which is a 
second-degree polynomial function. When there are only regressors corresponding to 
the quadratic function, we have a quadratic model: 

 2
1 2 3 +y x x u      (3-73) 

Quadratic functions are used quite often in applied economics to capture 
decreasing or increasing marginal effects. It is important to remark that, in such a case, 

2  does not measure the change in y with respect to x because it makes no sense to hold 

x2 fixed while changing x. The marginal effect of x on y, which depends linearly on the 
value of x, is the following: 

 2 32
dy

me x
dx

     (3-74) 

In a particular application this marginal effect would be evaluated at specific 
values of x. If 2 and 3 have opposite signs the turning point will be at 

 2*

32
x




   (3-75) 

If 2>0 and 3<0, then the marginal effect of x on y is positive at first, but it will 
be negative for values of x greater than *x . If 2<0 and 3>0, this marginal effect is 
negative at first, but it will be positive for values of x greater than *x .  

Example 3.5 Salary and tenure  

Using the data in ceosal2 to study the type of relation between the salary of the Chief Executive 
Officers (CEOSs) in USA corporations and the number of years in the company as CEO (ceoten), the 
following model was estimated: 

 2

(0.086) (0.0001) (0.0156) (0.00052)
ln( ) 6.246 0.0006 0.0440 0.0012salary profits ceoten ceoten     

R2=0.1976     n=177 

where company profits are in millions of dollars and salary is annual compensation in thousands of 
dollars.  

The marginal effect ceoten on salary expressed in percentage is the following: 


/ % 4.40 2 0.12salary ceotenme ceoten    
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Thus, if a CEO with 10 years in a company spends one more year in that company, their salary 
will increase by 2%. Equating to zero the previous expression and solving for ceoten, we find that the 
maximum effect of tenure as CEO on salary is reached by 18 years. That is, until 18 years the marginal 
effect of CEO tenure on the salary is positive. On the contrary, from 18 years onwards this marginal 
effect is negative.  

Cubic functions 

Another interesting case is the cubic function, or third-degree polynomial 
function. If in the model there are only regressors corresponding to the cubic function, 
we have a cubic model: 

 2 3
1 2 3 4y x x x u         (3-76) 

Cubic models are used quite often in applied economics to capture decreasing or 
increasing marginal effects, particularly in the cost functions. The marginal effect (me) 
of x on y, which depends on x in a quadratic form, will be the following: 

 2
2 3 42 3

dy
me x x

dx
       (3-77) 

The minimum of me will occur where 

 3 42 6 0
dme

x
dx

     (3-78) 

Therefore, 

 3
min

43
me





  (3-79) 

In a cubic model of a cost function, the restriction 2
3 4 23    must be met to 

guarantee that the minimum marginal cost is positive. Other restrictions that a cost 
function must satisfy are as follows: 1, 2, and 4>0; and 3<0 

Example 3.6 The marginal effect in a cost function 

Using the data on 11 pulp mill firms (file costfunc) to study the cost function, the following 
model was estimated: 

 2 3

(1.602) (0.2167) (0.0081) (0.000086)
29.16 2.316 0.0914 0.0013cost output output output     

R2=0.9984     n=11 

where output is the production of pulp in thousands of tons and cost is the total cost in millions of euros 

The marginal cost is the following: 

 22.316 2 0.0914 3 0.0013marcost output output      

Thus, if a firm with a production of 30 thousand tons of pulp increases the pulp production by 
one thousand  tons, the cost will increase by 0.754 million of euros. Calculating the minimum of the 
above expression and solving for output, we find that the minimum marginal cost is equal to a production 
of 23.222 thousand tons of pulp. 

3.5 Goodness-of-fit and selection of regressors. 

Once least squares have been applied, it is very useful to have some measure of 
the goodness of fit between the model and the data. In the event that several alternative 
models have been estimated, measures of the goodness of fit could be used to select the 
most appropriate model.  
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In econometric literature there are numerous measures of goodness of fit. The 
most popular is the coefficient of determination, which is designated by R2 or R-
squared, and the adjusted coefficient of determination, which is designated 2R  or 
adjusted R-squared. Given that these measures have some limitations, the Akaike 
Information Criterion (AIC) and Schwarz Criterion (SC) will also be referred to later on. 

3.5.1 Coefficient of determination 

As we saw in chapter 2, the coefficient of determination is based on the 
following breakdown: 

 TSS ESS RSS   (3-80) 

where TSS is the total sum of squares, ESS is the explained sum of squares and RSS is 
the residual sum of squares. 

Based on this breakdown, the coefficient of determination is defined as: 

 2 ESS
R

TSS
  (3-81) 

Alternatively, and in an equivalent manner, the coefficient of determination can 
be defined as  

 2 RSS
R

TSS
  (3-82) 

The extreme values of the coefficient of determination are: 0, when the 
explained variance is zero, and 1, when the residual variance is zero; that is, when the fit 
is perfect. Therefore, 

 20 1R£ £  (3-83) 

A small R2 implies that the disturbance variance (2) is large relative to the 
variance of y, which means that j is not estimated with precision. But remember that a 
large disturbance variance can be offset by a large sample size. Thus, if n is large 
enough, we may be able to estimate the coefficients with precision even though we have 
not controlled for many unobserved factors. 

To interpret the coefficient of determination properly, the following caveats 
should be taken into account:  

a) As new explanatory variables are added, the coefficient of determination 
increases its value or, at least, keeps the same value. This happens even though the 
variable (or variables) added have no relation to the endogenous variable. Thus, we can 
always verify that 

 2 2
1j jR R -³  (3-84) 

where the R is squared in a model with j-1 regressors, and  is the R squared in a 

model with an additional regressor. That is to say, if we add variables to a given model, 
R2 will never decrease, even if these variables do not have a significant influence. 

b) If the model has no intercept, the coefficient of determination does not have a 
clear interpretation because the decomposition given (3-80) is not fulfilled. In addition, 
the two forms of calculation mentioned - (3-81) and (3-82) - generally lead to different 
results, which in some cases may fall outside the interval [0, 1].  

2
1jR -

2
jR
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c) The coefficient of determination cannot be used to compare models in which 
the functional form of the endogenous variable is different. For example, R2 cannot be 
applied to compare two models in which the regressand is the original variable, y, and 
ln(y) respectively.  

3.5.2 Adjusted R-Squared 

To overcome one of the limitations of the R2, we can “adjust” it in a way that 
takes into account the number of variables included in a given model. To see how the 
usual R2 might be adjusted, it is useful to write it as 

 2 /
1

/

RSS n
R

TSS n
= -  (3-85) 

where, in the second term of the right-hand side, the residual variance is divided by the 
variance of the regressand. 

The R2, as it is defined in (3-85), is a sample measure. Now, if we want a 
population measure, we can define the population R2 as  

 
2

2
2

1 u
POP

y

R



   (3-86) 

However, we have better estimates for these variances, 2
u  and 2

y , than the 

ones used in the (3-85). So, let us use unbiased estimates for these variances 

 2 2/ ( ) 1
1 1 (1 )

/ ( 1)

SCR n k n
R R

SCT n n k

- -
= - = - -

- -
 (3-87) 

This measure is called the adjusted R–squared, or 2R .The primary attractiveness 
of  is that it imposes a penalty for adding additional regressors to a model. If a 
regressor is added to the model then RSS decreases, or at least is equal. On the other 
hand, the degrees of freedom of the regression nk always decrease.  can go up or 
down when a new regressor is added to the model. That is to say: 

 2 2
1j jR R -³
    

or     2 2
1j jR R -£  (3-88) 

An interesting algebraic fact is that if we add a new regressor to a model,  
increases if, and only if, the t statistic, which we will examine in chapter 4, on the new 
regressor is greater than 1 in absolute value. Thus we see immediately that  could be 
used to decide whether a certain additional regressor must be included in the model. The 

 has an upper bound that is equal to 1, but it does not strictly have a lower bound 
since it can take negative values. 

The observations b) and c) made to the R squared remain valid for the adjusted R 
squared.  

3.5.3 Akaike information criterion (AIC) and Schwarz criterion (SC) 

These two criteria- Akaike information criterion (AIC) and Schwarz Criterion 
(SC) - have a very similar structure. For this reason, they will be reviewed together. 

The AIC statistic, proposed by Akaike (1974) and based on information theory, 
has the following expression: 

2R

2R

2R

2R

2R
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2 2l k

AIC
n n

=- +  (3-89) 

where l is the log likelihood function (assuming normally distributed disturbances) 
evaluated at the estimated values of the coefficients. 

The SC statistic, proposed by Schwarz (1978), has the following expression: 

 
2 ln( )l k n

SC
n n

=- +  (3-90) 

The AIC and SC statistics, unlike the coefficients of determination (R2 and ), 
are better the lower their values are. It is important to remark that the AIC and SC 
statistics are not bounded unlike R2.  

a) The AIC and SC statistics penalize the introduction of new regressors. In the 
case of the AIC, as can be seen in the second term of the right hand side of (3-89), the 
number of regressors k appears in the numerator. Therefore, the growth of k will 
increase the value of AIC and consequently worsen the goodness of fit, if that is not 
offset by a sufficient growth of the log likelihood. In the case the SC, as can be seen in 
the second term of the right hand side of (3-90), the numerator is kln(n). For n>7, the 
following happens: kln(n)>2k. Therefore, SC imposes a larger penalty for additional 
regressors than AIC when the sample size is greater than seven. 

b) The AIC and SC statistics can be applied to statistical models without 
intercept.  

c) The AIC and SC statistics are not relative measures as are the coefficients of 
determination. Therefore, their magnitude, in itself, offers no information.  

d) The AIC and SC statistics can be applied to compare models in which 
endogenous variables have different functional forms. In particular, we will compare 
two models in which the regressands are y and ln(y). When the regressand is y, the 
formula (3-89) is applied in the AIC case, or (3-90) in the SC case. When the regressand 
is ln(y), and also when we want to carry out a comparison with another model in which 
the regressand is y, we must correct these statistics in the following way: 

 2ln( )CAIC AIC Y= +  (3-91) 

 2ln( )CSC SC Y= +  (3-92) 

where AICC and SCC are the corrected statistics, and AIC and SC are the statistics 
supplied by any econometric package such as the E-views. 

Example 3.7 Selection of the best model 

To analyze the determinants of expenditures on dairy the following alternative models have been 
considered: 

1)  1 2dairy inc u     

2)  1 2 ln( )dairy inc u     

3)  1 2 3 5dairy inc punder u       

4)  2 3 5dairy inc punder u     

5)  1 2 3dairy inc hhsize u       

6)  1 2ln( )dairy inc u     

7)  1 2 3ln( ) 5dairy inc punder u       

8)  2 3ln( ) 5dairy inc punder u     

2R
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where inc is disposable income of household, hhsize is the number of household members and punder5 is 
the proportion of children under five in the household. 

Using a sample of 40 households (file demand), and taking into account that ln( )dairy =2.3719, 

the goodness of fit statistics obtained for the eight models appear in table 1. In particular, the AIC 
corrected for model 6) has been calculated as follows: 

2ln( ) 0.2794 2 2.3719=5.0232CAIC AIC Y= + = + ´  

Conclusions 

a) The R-squared can be only used to compare the following pairs of models: 1) with 2), and 3) 
with 5).  

b) The adjusted R-squared can only be used to compare model 1) with 2), 3) and 5); and 6) with 7. 

c) The best model out of the eight is model 7) according to AIC and SC. 

TABLE 3.1. Measures of goodness of fit for eight models. 
Model number 1 2 3 4 5 6 7 8 

Regressand dairy dairy dairy dairy dairy ln(dairy) ln(dairy) ln(dairy)

Regressors 
intercept 

inc 

intercept

ln(inc) 

intercept
inc 

punder5

inc 

punder5

intercept 
Inc 

househsize

intercept 

inc 

intercept 
inc 

punder5 

inc 

punder5

R-squared 0.4584 0.4567 0.5599 0.5531 0.4598 0.4978 0.5986 -0.6813 

Adjusted R-squared 0.4441 0.4424 0.5361 0.5413 0.4306 0.4846 0.5769 -0.7255 

Akaike information 
criterion 

5.2374 5.2404 5.0798 5.0452 5.2847 0.2794 0.1052 1.4877 

Schwarz criterion 5.3219 5.3249 5.2065 5.1296 5.4113 0.3638 0.2319 1.5721 

Corrected Akaike 
information criterion 

     5.0232 4.8490 6.2314 

Corrected Schwarz 
criterion 

     5.1076 4.9756 6.3159 
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Exercises  

Exercise 3.1 Consider the linear regression model y = Xβ + u , where X  is a matrix 
50×5. 

Answer the following questions, justifying your answers: 

a) What are the dimensions of the vectors ,  ,  y β u ? 
b) How many equations are there in the system of normal equations

ˆ X Xβ = X y ? 

c) What conditions are needed in order to obtain β̂ ? 

Exercise 3.2 Given the model  

yi=β1+β2x2i+β3 x3i+ui 

and the following data:  
y x2 x3 

10 1 0 
25 3 -1 
32 4 0 
43 5 1 
58 7 -1 
62 8 0 
67 10 -1 
71 10 2 

a) Estimate β1, β2 and β3 by OLS.  
b) Calculate the residual sum of squares. 
c) Obtain the residual variance. 
d) Obtain the variance explained by the regression. 
e) Obtain the variance of the endogenous variable 
f) Calculate the coefficient of determination. 
g) Obtain an unbiased estimation of σ2. 

h) Estimate the variance of 2̂ . 

To answer these questions you can use Excel. See exhibit 3.1 as an example. 



Exhib
1) Cal

Expl
a) En
b) Y
c) O
form
d) W
these

2) Cal

a) E
b) Y
resu
c) O
form
d) W
these

3) Ca

4) Cal

5) Cal

bit 3.1 
lculation of X

lanation for X
nter the matric

You can find th
Once you have
mula:=MMUL
When the form
e two keys, pr

lculation of (X

Enter the matri
You can find th
ulting matrix (

Once you have 
mula:=MINVE
When the form

e two keys, pr

alculation of v

lculation of û
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Exercise 3.3 The following model was formulated to explain the annual sales (sales) of 
the manufacturers of household cleaning products as a function of a relative price index 
(rpi) and the advertising expenditures (adv): 

1 2 3sales rpi adv u       

where the variable sales is expressed in a thousand million euros and rpi is a relative 
price index obtained as a ratio between the prices of each firm and the prices of firm 1 
of the sample; adv is the annual expenditures on advertising and promotional campaigns 
and media diffusion, expressed in millions of euros. 

Data on ten manufacturers of household cleaning products appear in the attached 
table.  

firm sales rpi adv 
1 10 100 300 
2 8 110 400 
3 7 130 600 
4 6 100 100 
5 13 80 300 
6 6 80 100 
7 12 90 600 
8 7 120 200 
9 9 120 400 

10 15 90 700 

Using an excel spreadsheet,  

a) Estimate the parameters of the proposed model  
b) Estimate the covariance matrix. 
c) Calculate the coefficient of determination.  

Note: In exhibit 3.1 the model 1 2sales rpi u     is estimated using excel. 

Instructions are also included. 

Exercise 3.4 A researcher, who is developing an econometric model to explain income, 
formulates the following specification:  

 inc=α+βcons+γsave+u [1] 

where inc is the household disposable income, cons is the total consumption and save is 
the total savings of the household. 

The researcher did not take into account that the above three magnitudes are 
related by the identity  

 inc=cons+save [2] 

The equivalence between the models [1] and [2] requires that, in addition to the 
disappearance of the disturbance term, the model parameters [1] take the following 
values: α =0, β =1, and γ =1 

If you estimate equation [1] with the data for a given country, can you expect, in 

general, that the estimates will take the values ˆˆ ˆ0, 1, 0?      

Please justify your answer using mathematical notation. 

Exercise 3.5 A researcher proposes the following econometric model to explain tourism 
revenue (turtot) in a given country:  

1 2 3turtot turmean numtur u       

where turmean is the average expenditure per tourist and numtur is the total number of 
tourists. 
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a) It is obvious that turtot, numtur and turmean and are also linked by the 
relationship turtot=turmean×numtur. Will this somehow affect the 
estimation of the parameters of the proposed model? 

b) Is there a model with another functional form involving tighter 
restrictions on the parameters? If so, indicate it.  

c) What is your opinion about using the proposed model to explain the 
behavior of tourism revenue? Is it reasonable? 

Exercise 3.6 Let us suppose you have to estimate the model 

1 2 2 3 3 4 4ln( ) ln( ) ln( ) ln( )y x x x u         

using the following observations:  

x2 x3 x4 

3 12 4 
2 10 5 
4 4 1 
3 9 3 
2 6 3 
5 5 1 

What problems can arise in the estimation of this model? 

Exercise 3.7 Answer the following questions: 

a) Explain the determination coefficient (R2) and the adjusted determination 
coefficient ( R 2 ). What can you use them for? Justify your answer. 

b) Given the models  
 ln(y)=β1+β2ln(x)+u (1) 

 ln(y)=β1+β2ln(x)+β3ln(z)+u (2) 

 ln(y)=β1+β2ln(z)+u (3) 

  y=β1+β2z+u (4) 
indicate what measure of goodness of fit is appropriate to compare the 
following pairs of models: (1) - (2), (1) - (3), and (1) - (4). Explain your 
answer. 

Exercise 3.8 Let us suppose that the following model is estimated by OLS: 

1 2 3ln( ) ln( ) ln( )y x z u       
a) Can least square residuals all be positive? Explain your answer. 
b) Under the assumption of no autocorrelation of disturbances, are the OLS 

residuals independent? Explain your answer  
c) Assuming that the disturbances are not normally distributed, will the OLS 

estimators be unbiased? Explain your answer. 

Exercise 3.9 Consider the linear regression model  

yXu 

where y and u are vectors 81, X is a matrix 83 and  is a vector 31. Also the 
following information is available: 

2 0 0

0 3 0

0 0 3

 
    
  

X X   ˆ ˆ 22 u u  

Answer the following questions, by justifying your answer: 
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a) Indicate the sample size, the number of regressors, the number of 
parameters and the degrees of freedom of the residual sum of squares. 

b) Derive the covariance matrix of the vector ̂ , making explicit the 
assumptions used. Estimate the variances of the estimators.  

c) Does the regression have an intercept? What implications does the 
answer to this question have on the meaning of R2 in this model? 

Exercise 3.10 Discuss whether the following statements are true or false: 

a) In a linear regression model, the sum of the residuals is zero. 
b) The coefficient of determination ( 2R ) is always a good measure of the 

model’s quality. 
c) The least squares estimators are biased.  

Exercise 3.11 The following model is formulated to explain time spent sleeping:  

1 2 3 sleep totalwrk leisure u       

where sleep, totalwrk (paid and unpaid work) and leisure (time not devoted to sleep or 
work) are measured in minutes per day.  

The estimated equation with a sample of 1000 observations, using file timuse03, 
is the following: 

 1440 1  _ 1sleep total work leisure= - ´ - ´  

R2=1.000     n=1000 

a) What do you think about these results? 
b) What is the meaning of the estimated intercept? 

Exercise 3.12 Using a subsample of the Structural Survey of Wages (Encuesta de 
estructura salarial) for Spain in 2006 (file wage06sp), the following model is estimated 
to explain wage: 

ln( ) 1.565 0.0730 0.0177 0.0065wage educ tenure age     

R2=0.337     n=800 

where educ (education), tenure (experience in the firm) and age are measured in years 
and wage in euros per hour. 

a) What is the interpretation of coefficients on educ, tenure and age? 
b) How many years does the age have to increase in order to have a similar 

effect to an increase of one year in education, holding fixed in each case 
the other two regressors? 

c) Knowing that educ =10.2, tenure =7.2 and age =42.0, calculate the 
elasticities of wage with respect to educ, tenure and age for these values, 
holding fixed the others regressors. Do you consider these elasticities to 
be high or low? 

Exercise 3.13 The following equation describes the price of housing in terms of house 
bedrooms (number of bedrooms), bathrms (number of full bathrooms) and lotsize (the 
lot size of a property in square feet): 

1 2 3 4price bedrooms bathrms lotsize u         

where price is the price of a house measured in dollars. 
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Using the data for the city of Windsor contained in file housecan, the following 
model is estimated: 

 2418 5827 19750 5.411price bedrooms bathrms lotsize      

R2=0.486     n=546 

a)  What is the estimated increase in price for a house with one more 
bedroom and one more bathroom, holding lotsize constant? 

b) What percentage of the variation in price is explained jointly by the 
number of bedrooms, the number of full bathrooms and the lot size? 

c) Find the predicted selling price for a house of the sample with 
bedrooms=3, bathrms=2 and lotsize=3880. 

d) The actual selling price of the house in c) was $66,000. Find the residual 
for this house. Does the result suggest that the buyer underpaid or 
overpaid for the house? 

Exercise 3.14 To examine the effects of a firm’s performance on a CEO salary, the 
following model was formulated: 

1 2 3 4 5ln( ) ln( )salary roa sales profits tenure u           

where roa is the ratio profits/assets expressed as a percentage and tenure is the number 
of years as CEO (=0 if less than 6 months). Salaries are expressed in thousands of 
dollars, and sales and profits in millions of dollars. 

The file ceoforbes has been used for the estimation. This file contains data on 
447 CEOs of America's 500 largest corporations. (52 of the 500 firms were excluded 
because of missing data on one or more variables. Apple Computer was also excluded 
since Steve Jobs, the acting CEO of Apple in 1999, received no compensation during 
this period.) Company data come from Fortune magazine for 1999; CEO data come 
from Forbes magazine for 1999 too. The results obtained were the following: 

ln( ) 4.641 0.0054 0.2893ln( ) 0.0000564 0.0122salary roa sales profits tenure      

R2=0.232     n=447 

a) Interpret the coefficient on the regressor roa 
b) Interpret the coefficient on the regressor ln(sales). What is your opinion 

about the magnitude of the elasticity salary/sales? 
c) Interpret the coefficient on the regressor profits.  
d) What is the salary/profits elasticity at the sample mean ( salary =2028 and 

profits =700). 

Exercise 3.15 (Continuation of exercise 2.21) Using a dataset consisting of 1,983 firms 
surveyed in 2006 (file rdspain), the following equation was estimated:  

 1.8168 0.1482ln( ) 0.0110rdintens  sales   exponsal=- + +  

R2= 0.048     n=1983 

where rdintens is the expenditure on research and development (R&D) as a percentage 
of sales, sales are measured in millions of euros, and exponsal is exports as a percentage 
of sales. 

a) Interpret the coefficient on ln(sales). In particular, if sales increase by 
100%, what is the estimated percentage point change in rdintens? Is this 
an economically large effect?  

b) Interpret the coefficient on exponsal. Is it economically large? 
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c) What percentage of the variation in rdintens is explained by sales and 
exponsal? 

d) What is the rdintens/sales elasticity for the sample mean ( rdintens

=0.732 and sales =63544960). Comment on the result. 

e) What is the rdintens/exponsal elasticity for the sample mean ( rdintens

=0.732 and exponsal =17.657). Comment on the result. 

Exercise 3.16 The following hedonic regression for cars (see example 3.3) is 
formulated:  

1 2 3 4ln( )price cid hpweight fueleff u         

where cid is the cubic inch displacement, hpweight is the ratio horsepower/weight in kg 
expressed as percentage and fueleff is the ratio liters per 100 km/horsepower expressed 
as a percentage. 

a) What are the probable signs of β2, β3 and β4? Explain them. 
b) Estimate the model using the file hedcarsp and write out the results in 

equation form. 
c) Interpret the coefficient on the regressor cid. 
d) Interpret the coefficient on the regressor hpweight. 
e) To expand the model, add a regressor relative to car size, such as volume 

or weight. What happens if you add both of them? What is the 
relationship between weight and volume? 

Exercise 3.17 The concept of work covers a broad spectrum of possible activities in the 
productive economy. An important part of work is unpaid; it does not pass through the 
market and therefore has no price. The most important unpaid work is housework 
(houswork) carried out mainly by women. In order to analyze the factors that influence 
housework, the following model is formulated: 

1 2 3 4 5houswork educ hhinc age paidwork u           

where educ is the years of education attained, hhinc is the household income in euros 
per month. The variables houswork and paidwork are measured in minutes per day. 

Use the data in the file timuse03 to estimate the model. This file contains 1000 
observations corresponding to a random subsample extracted from the time use survey 
for Spain carried out in 2002-2003.  

a) Which signs do you expect for β2, β3, β4 and β5? Explain. 
b) Write out the results in equation form? 
c) Do you think there are relevant factors omitted in the above equation? 

Explain. 
d) Interpret the coefficient on the regressors educ, hhinc, age and paidwork.  

Exercise 3.18 (Continuation of exercise 2.20) To explain the overall satisfaction of 
people (stsfglo), the following model is formulated: 

1 2 3stsfglo gnipc lifexpec u       

where gnipc is the gross national income per capita expressed in PPP 2008 US dollar 
terms and lifexpec is the life expectancy at birth, i.e., the number of years a newborn 
infant could expect to live. When a magnitude is expressed in PPP (purchasing power 
parity) US dollar terms, a magnitude is converted to international dollars using PPP 
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rates. (An international dollar has the same purchasing power as a US dollar in the 
United States.) 

Use the file HDR2010 for the estimation of the model. 

a) What are the expected signs for β2 and β3? Explain. 
b) What would be the average overall satisfaction for a country with 80 

years of life expectancy at birth and a gross national income per capita of 
30000 $ expressed in PPP 2008 US dollars? 

c) Interpret the coefficients on gnipc and lifexpe. 
d) Given a country with a life expectancy at birth equal to 50 years, what 

should be the gross national income per capita to obtain a global 
satisfaction equal to five? 

Exercise 3.19 (Continuation exercise 2.24) Due to the problems arisen in the Keynesian 
consumption function, Brown introduced a new regressor in the function: consumption 
lagged a period to reflect the persistence of consumer habits. The formulation of the 
model is as follows 

1 2 3 1t t t tconspc incpc conspc u b b b -+ + +  

As lagged consumption is included in this model, we have to distinguish 
between marginal propensity to consume in the short term and long term. The short-run 
marginal propensity is calculated in the same way as in the Keynesian consumption 
function. To calculate the long-term marginal propensity it is necessary to consider 
equilibrium state with no changes in variables. Denoting by conspce and incpce 
consumption and income in equilibrium, and regardless of the random disturbance, the 
previous model in equilibrium is given by 

1 2 3
e e econspc incpc conspc b b b+ +  

The Brown consumption function was estimated with data of the Spanish 
economy for the period 1954-2010 (file consumsp), obtaining the following results: 


17.156 0.3965 0.5771t t tconspc incpc conspc      

R2=0.997      n=56 

a) Interpret the coefficient on incpc. In the interpretation, do you have to 
include the clause "holding fixed the other regressor”? Justify the answer. 

b) Calculate the short-term elasticity for the sample means ( conspc =8084, 

incpc =8896). 
c) Calculate the long-term elasticity for the sample means. 
d) Discuss the difference between the values obtained for the two types of 

elasticity. 

Exercise 3.20 To explain the influence of incentives and expenditures in advertising on 
sales, the following alternative models have been formulated:  

 1 2 3sales advert incent u       (1) 

 1 2 3ln( ) ln( ) ln( )sales advert incent u       (2) 

 1 2 3ln( )sales advert incent u       (3) 

 2 3sales advert incent u     (4) 

 1 2ln( ) ln( )sales incent u     (5) 
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 1 2sales incent u     (6) 

a) Using a sample of 18 sale areas (file advincen), estimate the above 
models: 

b) In each of the following groups select the best model, indicating the 
criteria you have used. Justify your answer. 

b1) (1) and (6) 
b2)  (2) and (3) 
b3)  (1) and (4) 
b4)  (2), (3) and (5) 
b5)  (1), (4) and (6) 
b6)  (1), (2), (3), (4), (5) and (6) 

Appendixes 

Appendix 3.1 Proof of the theorem of Gauss-Markov 

To prove this theorem, the MLC assumptions 1 through 9 are used.  

Let us now consider another estimator β  which is a function of y (remember 

that ˆ   is also a function of y), given by  

   1    β X X X A y  (3-93) 

where A is k n  arbitrary matrix, that is a function of X and/or other non-stochastic 

variables, but it is not a function of y. Forβ  to be unbiased, certain conditions must be 
accomplished. 

Taking (3-52) into account, we have 

      1 1             β  X X X A X + u  AX  X X X A u       (3-94) 

Taking expectations on both sides of (3-94), we have 

   1
( ) ( )E Eβ AX  X X X A u AX

             (3-95) 

For β  to be unbiased, that is to say, ( )E β   , the following must be 
accomplished:  

 AX I  (3-96) 

Consequently, 

   1    β  X X X A u    (3-97) 

Taking into account assumptions 7 and 8, and (3-96), the ( )Var β  is equal to 
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( ) (( ( )Var E E

E

β β β X X X A uu X X X A

X X X uu X X X AA X X AA

 
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                  
                     

   

 (3-98) 

The difference between both variances is the following: 

    1 12 2ˆ( ) ( )Var Var            β β X X AA X X AA  (3-99) 

The product of a matrix by its transpose is always a semi-positive definite 
matrix. Therefore, 

 
2ˆ( ) ( ) 0Var Var    β β AA  (3-100) 

The difference between the variance of an estimator β  - arbitrary but linear and 

unbiased – and the variance of the estimator β̂  is a semi positive definite matrix. 

Consequently, β̂  is a Best Unbiased Linear Estimator; that is to say, it is a BLUE 
estimator. 

Appendix 3.2 Proof: 2  is an unbiased estimator of the variance of the disturbance 

In order to see which is the most appropriate estimator of 2 , we shall first 
analyze the properties of the sum of squared residuals. This one is precisely the 
numerator of the residual variance. 

Taking into account (3-17) and (3-23), we are going to express the vector of 
residuals as a function of the regressand 

    1 1ˆˆ
         u y - Xβ y - X X X X y I - X X X X y My  (3-101) 

where M is an idempotent matrix. 

Alternatively, the vector of residuals can be expressed as a function of the 
disturbance vector: 
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1 1

1 1
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 

 
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     

             

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X - X X X X X u X X X X u

X - X I X X X X u I X X X X u

Mu



  

 
 (3-102) 

Taking into account (3-102), the sum of squared residuals (SSR) can be 
expressed in the following form: 

 ˆ ˆu u u M Mu u Mu      (3-103) 

Now, keeping in mind that we are looking for an unbiased estimator of 2 , we 
are going to calculate the expectation of the previous expression: 
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       
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 (3-104) 

In deriving (3-104), we have used the property of the trace that 
( ) ( )tr tr=AB BA . Taking into account that property of the trace, the value of trM  is 

obtained: 

   1 1

      

   

n n n n

n n k k

tr tr tr tr

tr tr n k

 
 

 

        
   

M I X X X X I X X X X

I I  

According to (3-104), it holds that  

 
 2
ˆ ˆE

n k






u u

 (3-105) 

Keeping (3-105) in mind, an unbiased estimator of the variance will be: 

 
2 ˆ ˆ

ˆ
n k







u u
 (3-106) 

since, according to (3-104),  

 
2

2 2ˆ ˆ ˆ ˆ( ) ( )
ˆ( )

E n k
E E

n k n k n k

 
          

u u u u
 (3-107) 

The denominator of (3-106) is the degree of freedom corresponding to the RSS 
that appear in the numerator. This result is justified by the fact that the normal equations 
of the hyperplane impose k restrictions on the residuals. Therefore, the number of 
degrees of freedom of the RSS is equal to the number of observations (n) minus the 
number of restrictions k. 

Appendix 3.3 Consistency of the OLS estimator 

In appendix 2.8 we have proved the consistency of the OLS estimator 2b̂  in the 
simple regression model. Now we are going to prove the consistency of the OLS vector 

β̂ .  

First, the least squares estimator β̂ , given in (3-23). may be written as 

 ˆ
n n

-æ ö æ ö÷ ÷ç ç= + ÷ ÷ç ç÷ ÷ç çè ø è ø
β β X'X X'u

1
1 1

 (3-108) 

Now, we take limits in the last factor of (3-108) and call Q to the result:  

 
n n¥

1
lim X'X = Q  (3-109) 

If X is taken to be fixed in repeated samples, according to assumption 2, then 
(3-109) implies that Q=(l/n)X'X. According to assumption 3, and because the inverse is 
a continuous function of the original matrix, Q-1 exists. Therefore, we can write  
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The last term of (3-108) can be written as 
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where xi is the column vector corresponding to the ith observation 

Now, we are going to calculate the expectation and the variance (3-110), 
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 (3-112) 

since [ ]'E uu Is= 2 , according to assumptions 7 and 8. 

Taking limits in (3-112), it then follows that  

 i in n n

s
¥ ¥

é ù
ê úë û

2

2
lim var lim 0( )x u = Q = Q = 0  (3-113) 

Since the expectation of i ix u is identically zero and its variance converges to 

zero, i ix u
 
converges in mean square to zero. Convergence in mean square implies 

convergence in probability, and so plim( i ix u )=0. Therefore,  

 ˆplim( ) plim( ) plimi i n
- - -é ù

ê ú= + = + = + ´ =
ê úë û

β β Q x u β Q X'u β Q β1 1 11
0  (3-114) 

Consequently, β̂  is a consistent estimator. 

Appendix 3.4 Maximum likelihood estimator  

The method of maximum likelihood is widely used in econometrics. This 
method proposes that the parameter estimators be those values for which the probability 
of obtaining the observations given is maximum. In the least squares estimation no prior 
assumption was adopted. On the contrary, the estimation by maximum likelihood 
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requires that statistical assumptions about the various elements of the model be 
established beforehand. Thus, in the estimation by maximum likelihood we will adopt 
all the assumptions of classic linear model (CLM). 

Therefore, in the estimation by maximum likelihood of β and σ2 in the model 
(3-52), we take as estimators those values that maximize the probability to obtain the 
observations in a given sample. 

Let us look at the procedure for obtaining the maximum likelihood estimators β 
and σ. According to the CLM assumptions: 

 2( , )N su 0 I  (3-115) 

The expectation and variance of the distribution of y are given by 

  ( ) ( )E E Ey = Xβ+ u = Xβ+ u = Xβ  (3-116) 

    2var( ) E Ey = y Xβ y Xβ = uu = I        
 (3-117) 

Therefore, 

 2( , )N sy Xβ I  (3-118) 

The probability density of y (or likelihood function), considering X and y fixed 
and β and σ2 variable, will be in accordance with (3-118) equal to 

 
 

     2 2
/22

1
( , ) exp 1 2

2π
nL f y β y - Xβ ' y Xβ 


      (3-119) 

The maximum for L is reached in the same point on the ln(L) given that the 
logarithm function is monotonic, and thus, in order to maximize the function, we can 
work with ln(L) instead of L. Therefore, 
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L (y - Xβ)'(y - Xβ)




      (3-120) 

To maximize ln(L), we differentiate it with respect to β and σ2:  

 
2

ln( ) 1
( 2 2 )

2

L
X'y X'Xβ

β


 

     (3-121) 

 
2 2 4

ln( ) ( )

2 2

L n y - Xβ)'(y - Xβ
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    (3-122) 

Equating (3-121) to zero, we see that the maximum likelihood estimator of β, 
denoted by β , satisfies that 

 ' 'X X X y   (3-123) 

Because we assume that 'X X  is invertible,  

   1
' 'β X X X y

   (3-124) 

Consequently, the maximum likelihood estimator of β, under the assumptions of 
the CLM, coincides with OLS estimator, that is to say, 

 ˆβ = β  (3-125) 

Therefore,  
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 ˆ ˆ ˆ ˆ) '(y - Xβ)'(y - Xβ) = (y - Xβ)'(y - Xβ u u   (3-126) 

Equating (3-122) to zero and by substituting β by β , we obtain:  

 
2 4

ˆ ˆ'
0

2 2

n u u

 
  

 
 (3-127) 

where we have designated by 2  the maximum likelihood estimator of the variance of 
the random disturbances. From (3-127), it follows that  

 2 ˆ ˆ'

n

u u   (3-128) 

As we can see, the maximum likelihood estimator is not equal to the unbiased 
estimator that has been obtained in (3-106). In fact, if we take expectations to (3-128),  

  2 21
ˆ ˆ'

n k
E E

n n
      u u  (3-129) 

That is to say, the maximum likelihood estimator, 2 , is a biased estimator, 
although its bias tends to zero as n infinity, since 

 lim 1
n

n k

n


  (3-130) 

 


