EE 280 Introduction to Digital Logic Design

Lecture 3. Complements: Two's and One's

EE280 Lecture 3

3 - 1

Number Representation						
II. 2's Complement Representation						
+ve no	+ve nos.: sign and magnitude -ve nos.: -N is represented by N*, the 2's Complement					
where N* =						
e.g.,	n = 4					
	2 ⁿ = 16 ₁₀ = 10000					
	+6 = 0110					
	-6 = 10000 - 0110 =					
	-1 =					
	EI	E280 Lecture 3	3 - 4			

+ve nos.: sign and magnitude
-ve nos.: -N represented by Ñ, the 1's complement
where Ñ =
e.g., n = 4
2ⁿ - 1 = 16 - 1 = 15 = 10000 - 1
-6 = 1111 - 0110
-1 =

3 - 5

5.	Addition of 2's Complement Numbers Two negative numbers, $ sum \le 2^{n-1}$				
	- 4 <u>- 2</u> - 6	1 1 0 0 <u>1 1 1 0</u> Co siç	orrect answer. Ignore carry from gn bit. Not an overflow.		
6.	Two negative numbers, sum > 2 ⁿ⁻¹				
	- 6 <u>- 3</u> - 9	1010 <u>1101</u> -9 41	rong answer because of overflow: is too large to be represented in a bit number (including sign).		
			EE280 Lecture 3	3 - 12	

