EE 280
 Introduction to Digital Logic Design

Lecture 3. Complements: Two's and One's

Number Representation

- Read Chapter 1.5, 2.1, and 2.2 for next class

Negative Numbers
How do we represent negative numbers in a word length of n bits?
I. Sign and Magnitude Representation

sign bit

Number Representation

e.g., $0110 \equiv+6$
$00000110 \equiv+6$

This representation is not popular - design of logic networks to do arithmetic is awkward.

Number Representation

II. 2's Complement Representation

+ve nos.: sign and magnitude
-ve nos.: $\quad-N$ is represented by \mathbf{N}^{*}, the 2 's Complement
where $\mathbf{N}^{*}=$
e.g., $\quad n=4$

$$
2^{n}=16_{10}=10000
$$

$$
\text { +6 = } 0110
$$

$-6=10000-0110=$
$-1=$

Number Representation

III. 1's Complement Representation
+ve nos.: \quad sign and magnitude
-ve nos.: $\quad-N$ represented by \tilde{N}, the 1 's complement
where $\tilde{\mathbf{N}}=$
e.g., $\quad n=4$

$$
\begin{aligned}
& 2^{n}-1=16-1=15=10000-1 \\
& -6=1111-0110 \\
& -1=
\end{aligned}
$$

Number Representation

An alternate method to obtain the 1 's complement: complement \mathbf{N} bit by bit.

$$
\begin{array}{rlrl}
6 & =0110 & 1 & =00001 \\
-6 & = & -1 & =
\end{array}
$$

Note that for the 2's complement:

$$
N^{*}=2^{n}-N=\left(2^{n}-1-N\right)+1
$$

i.e., to form 2's complement, add 1 to 1 's complement.

Number Representation

Equivalently: Complement each bit to the left of the least significant 1.
$6=0110$
2's Complement of 60110
-6 =

Number Representation

Thus, given a negative number in $\left\{\begin{array}{l}\text { 2's } \\ 1 \text { 's }\end{array}\right\}$ complement representation, we can obtain the magnitude of that number by taking the $\left\{\begin{array}{l}{ }_{1}^{2} \text { 's } s\end{array}\right\}$ complement of $\left\{\begin{array}{l}\mathbf{N}^{*} \\ \tilde{\mathbf{N}}\end{array}\right\}$.
e.g., if $N^{*}=100110 \quad$ (2's complement)
$\mathrm{N}=$
or $\tilde{\mathrm{N}}=100101$ (1's complement)
$\mathrm{N}=$

Addition of 2's Complement Numbers

Adding two n-bit numbers: add numbers as if both were positive (although one or both may be negative).

Six possible cases can occur:

1. Two positive numbers, sum < 2n-1
$+6 \quad 0110$
$+10001$
Correct answer.

Addition of 2's Complement Numbers

2. Two positive numbers, sum $\geq \mathbf{2}^{\mathrm{n}-1}$
$+60110$
$+20010$ Overflow! - too big a number!

- Largest number for $\mathrm{n}=4$ is
- How do we know when overflow occurs?

The 1 in the MSB position indicates a negative number, after adding two +ve numbers.

Addition of 2's Complement Numbers

3. Positive and negative numbers (-ve number has greatest magnitude).

$$
\begin{array}{ll}
+1 & 0
\end{array} 001010
$$

Correct answer. How do we know?
4. Positive and negative numbers (+ve number has greatest magnitude).
$+60110$
-2 1110
$+4 \quad$ Correct answer.
Ignore carry from sign bit. Not an overflow.

Addition of 2's Complement Numbers

5. Two negative numbers, \mid sum| $\leq \mathbf{2}^{\mathrm{n}-1}$
-4 1100
-2 1110
-6 Correct answer. Ignore carry from sign bit. Not an overflow.
6. Two negative numbers, \mid sum $\mid>2^{n-1}$

- 61010
-3 1101
-9 Wrong answer because of overflow: -9 is too large to be represented in a 4 bit number (including sign).

Addition of 1's Complement Numbers

1. Similar to 2's complement addition.

Two positive numbers cases identical to cases 1 and 2 above.
2. Positive and negative number (-ve number largest magnitude).

20010

- 6
-4 Correct answer.

Addition of 1's Complement Numbers

3. Positive and negative number (+ve number largest magnitude).

- 2
$+\mathbf{+ 6} \quad 0110$
Correct answer? No, add carry to LSB No overflow.

4. Two negative numbers, \mid sum $\mid<2^{\mathrm{n}-1}$
-4 1011
-2 1101

- 6 Correct answer with end around carry; no overflow.

Addition of 1 's Complement Numbers

5. Two negative numbers, \mid sum| $\geq \mathbf{2}^{\mathrm{n}-1}$

- $6 \quad 1001$
-4 1011
-10
Wrong answer; overflow!

