

MAGNETIC FIELDS DUE TO CURRENTS

Abstract

2, WHAT IS PHYSICS?

One basic observation of physics is that a moving charged particle produces a magnetic field around itself. Thus a current of moving charged particles produces a magnetic field around the current. This feature of electromagnetism, which is the combined study of electric and magnetic effects, came as a surprise to the people who discovered it. Surprise or not, this feature has become enormously important in everyday life because it is the basis of countless electromagnetic devices. For example, a magnetic field is produced in maglev trains and other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in a very small section of current-carrying wire. Then we shall find the magnetic field due to the entire wire for several different arrangements of the wire.

29-2 Calculating the Magnetic Field Due to a Current

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find the magnetic field \vec{B} at a nearby point P. We first mentally divide the wire into differential elements $d s$ and then define for each element a length vector $d \vec{s}$ that has length $d s$ and whose direction is the direction of the current in $d s$. We can then define a differential current-length element to be $i d \bar{s}$; we wish to calculate the field $d \vec{B}$ produced at P by a typical current-length element. From experiment we find that magnetic fields, like electric fields, can be superimposed to find a net field. Thus, we can calculate the net field \vec{B} at P by summing, via integration, the

Fig. 29-1 A current-length element $i d \vec{s}$ produces a differential magnetic field $d \vec{B}$ at point P. The green \times (the tail of an arrow) at the dot for point P indicates that $d \vec{B}$ is directed into the page there.

This element of current creates a magnetic field at P, into the page.
contributions $d \vec{B}$ from all the current-length elements. However, this summation is more challenging than the process associated with electric fields because of a complexity; whereas a charge element $d q$ producing an electric field is a scalar, a current-length element $i d \vec{s}$ producing a magnetic field is a vector, being the product of a scalar and a vector.

The magnitude of the field $d \vec{B}$ produced at point P at distance r by a currentlength element $i d \vec{s}$ turns out to be

$$
\begin{equation*}
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}, \tag{29-1}
\end{equation*}
$$

where θ is the angle between the directions of $d \vec{s}$ and $\hat{\mathrm{r}}$, a unit vector that points from $d s$ toward P. Symbol μ_{0} is a constant, called the permeability constant, whose value is defined to be exactly

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \approx 1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} . \tag{29-2}
\end{equation*}
$$

The direction of $d \vec{B}$, shown as being into the page in Fig. 29-1, is that of the cross product $d \vec{s} \times \hat{\mathrm{r}}$. We can therefore write Eq. $29-1$ in vector form as

$$
\begin{equation*}
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{\mathrm{r}}}{r^{2}} \quad \text { (Biot-Savart law). } \tag{29-3}
\end{equation*}
$$

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot and Savart (rhymes with "Leo and bazaar"). The law, which is experimentally deduced, is an inverse-square law. We shall use this law to calculate the net magnetic field \vec{B} produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire

Shortly we shall use the law of Biot and Savart to prove that the magnitude of the magnetic field at a perpendicular distance R from a long (infinite) straight wire carrying a current i is given by

$$
\begin{equation*}
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (long straight wire). } \tag{29-4}
\end{equation*}
$$

The field magnitude B in Eq. 29-4 depends only on the current and the perpendicular distance R of the point from the wire. We shall show in our derivation that the field lines of \vec{B} form concentric circles around the wire, as Fig. 29-2 shows and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines in Fig. 29-2 with increasing distance from the wire represents the $1 / R$ decrease in the magnitude of \vec{B} predicted by Eq. 29-4. The lengths of the two vectors \vec{B} in the figure also show the $1 / R$ decrease.

Fig. 29-3 Iron filings that have been sprinkled onto cardboard collect in concentric circles when current is sent through the central wire. The alignment, which is along magnetic field lines, is caused by the magnetic field produced by the current. (Courtesy Education Development Center)

The magnetic field vector at any point is tangent to a circle.

Fig. 29-2 The magnetic field lines produced by a current in a long straight wire form concentric circles around the wire. Here the current is into the page, as indicated by the \times.

Fig. 29-4 A right-hand rule gives the direction of the magnetic field due to a current in a wire. (a) The situation of Fig. 29-2, seen from the side. The magnetic field \vec{B} at any point to the left of the wire is perpendicular to the dashed radial line and directed into the page, in the direction of the fingertips, as indicated by the \times. (b) If the current is reversed, \vec{B} at any point to the left is still perpendicular to the dashed radial line but now is directed out of the page, as indicated by the dot.

Fig. 29-5 Calculating the magnetic field produced by a current i in a long straight wire. The field $d \vec{B}$ at P associated with the current-length element $i d \vec{s}$ is directed into the page, as shown.

The thumb is in the current's direction. The fingers reveal the field vector's direction, which is tangent to a circle.

Here is a simple right-hand rule for finding the direction of the magnetic field set up by a current-length element, such as a section of a long wire:

Right-hand rule: Grasp the element in your right hand with your extended thumb pointing in the direction of the current. Your fingers will then naturally curl around in the direction of the magnetic field lines due to that element.

The result of applying this right-hand rule to the current in the straight wire of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the magnetic field \vec{B} set up at any particular point by this current, mentally wrap your right hand around the wire with your thumb in the direction of the current. Let your fingertips pass through the point; their direction is then the direction of the magnetic field at that point. In the view of Fig. 29-2, \vec{B} at any point is tangent to a magnetic field line; in the view of Fig. 29-4, it is perpendicular to a dashed radial line connecting the point and the current.

Proof of Equation 29-4

Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of infinite length, illustrates the task at hand. We seek the field \vec{B} at point P, a perpendicular distance R from the wire. The magnitude of the differential magnetic field produced at P by the current-length element $i d \vec{s}$ located a distance r from P is given by Eq. 29-1:

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

The direction of $d \vec{B}$ in Fig. 29-5 is that of the vector $d \vec{s} \times \hat{\mathrm{r}}$-namely, directly into the page.

Note that $d \vec{B}$ at point P has this same direction for all the current-length elements into which the wire can be divided. Thus, we can find the magnitude of the magnetic field produced at P by the current-length elements in the upper half of the infinitely long wire by integrating $d B$ in Eq. 29-1 from 0 to ∞.

Now consider a current-length element in the lower half of the wire, one that is as far below P as $d \vec{s}$ is above P. By Eq. 29-3, the magnetic field produced at P by this current-length element has the same magnitude and direction as that from element $i d \vec{s}$ in Fig. 29-5. Further, the magnetic field produced by the lower half of the wire is exactly the same as that produced by the upper half. To find the magnitude of the total magnetic field \vec{B} at P, we need only multiply the result of our integration by 2 . We get

$$
\begin{equation*}
B=2 \int_{0}^{\infty} d B=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{\sin \theta d s}{r^{2}} \tag{29-5}
\end{equation*}
$$

The variables θ, s, and r in this equation are not independent; Fig. 29-5 shows that they are related by

$$
r=\sqrt{s^{2}+R^{2}}
$$

and

$$
\sin \theta=\sin (\pi-\theta)=\frac{R}{\sqrt{s^{2}+R^{2}}}
$$

With these substitutions and integral 19 in Appendix E, Eq. 29-5 becomes

$$
\begin{align*}
B & =\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{R d s}{\left(s^{2}+R^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} i}{2 \pi R}\left[\frac{s}{\left(s^{2}+R^{2}\right)^{1 / 2}}\right]_{0}^{\infty}=\frac{\mu_{0} i}{2 \pi R} \tag{29-6}
\end{align*}
$$

as we wanted. Note that the magnetic field at P due to either the lower half or the upper half of the infinite wire in Fig. 29-5 is half this value; that is,

$$
\begin{equation*}
B=\frac{\mu_{0} i}{4 \pi R} \quad \text { (semi-infinite straight wire). } \tag{29-7}
\end{equation*}
$$

Magnetic Field Due Lo a Current in a Circular Arc of Wire

To find the magnetic field produced at a point by a current in a curved wire, we would again use Eq. 29-1 to write the magnitude of the field produced by a single current-length element, and we would again integrate to find the net field produced by all the current-length elements. That integration can be difficult, depending on the shape of the wire; it is fairly straightforward, however, when the wire is a circular arc and the point is the center of curvature.

Figure $29-6 a$ shows such an arc-shaped wire with central angle ϕ, radius R, and center C, carrying current i. At C, each current-length element $i d \vec{s}$ of the wire produces a magnetic field of magnitude $d B$ given by Eq. 29-1. Moreover, as Fig. 29-6 b shows, no matter where the element is located on the wire, the angle θ between the vectors $d \vec{s}$ and $\hat{\mathrm{r}}$ is 90°; also, $r=R$. Thus, by substituting R for r and 90° for θ in Eq. 29-1, we obtain

$$
\begin{equation*}
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 90^{\circ}}{R^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i d s}{R^{2}} \tag{29-8}
\end{equation*}
$$

The field at C due to each current-length element in the arc has this magnitude.
An application of the right-hand rule anywhere along the wire (as in Fig. 29-6c) will show that all the differential fields $\vec{d} \vec{B}$ have the same direction at C directly out of the page. Thus, the total field at C is simply the sum (via integration) of all the differential fields $d \vec{B}$. We use the identity $d s=R d \phi$ to change the variable of integration from $d s$ to $d \phi$ and obtain, from Eq. 29-8,

$$
B=\int d B=\int_{0}^{\phi} \frac{\mu_{0}}{4 \pi} \frac{i R d \phi}{R^{2}}=\frac{\mu_{0} i}{4 \pi R} \int_{0}^{\phi} d \phi
$$

Integrating, we find that

$$
\begin{equation*}
B=\frac{\mu_{0} i \phi}{4 \pi R} \quad \text { (at center of circular arc). } \tag{29-9}
\end{equation*}
$$

Note that this equation gives us the magnetic field only at the center of curvature of a circular arc of current. When you insert data into the equation, you must be careful to express ϕ in radians rather than degrees. For example, to find the magnitude of the magnetic field at the center of a full circle of current, you would substitute $2 \pi \mathrm{rad}$ for ϕ in Eq. 29-9, finding

$$
\begin{equation*}
B=\frac{\mu_{0} i(2 \pi)}{4 \pi R}=\frac{\mu_{0} i}{2 R} \quad \text { (at center of full circle). } \tag{29-10}
\end{equation*}
$$

The right-hand rule reveals the field's direction at the center.

Fig. 29-6 (a) A wire in the shape of a circular are with center C carries current i. (b) For any element of wire along the arc, the angle between the directions of $d \vec{s}$ and $\hat{\mathrm{f}}$ is 90°. (c) Determining the direction of the magnetic field at the center C due to the current in the wire; the field is out of the page, in the direction of the fingertips, as indicated by the colored dot at C.

