Linear Algebra
 BS-CS

Time: 9:00am - 3:00pm
Date: 25/06/2020

Instructions:

\Rightarrow Allowed time is 6 hours (9:00am to 3:00pm)
$>$ Mark all the answers sheets with page numbers and ID on every sheet number
> Answers copied will both be marked zero
\rightarrow Late Submission will not be accepted
\rightarrow Submit in PDF format

1. Consider the following vectors R^{3} :

$$
\mathrm{V}_{1}=\left(\begin{array}{l}
I D 1 \\
I D 2 \\
I D 3
\end{array}\right), \mathrm{V}_{2}=\left(\begin{array}{l}
I D 2 \\
I D 3 \\
I D 4
\end{array}\right), \mathrm{V}_{3}=\left(\begin{array}{l}
I D 3 \\
I D 4 \\
I D 5
\end{array}\right)
$$

Solve the system and find if these vectors are linearly independent?
2. Suppose that a company produces two products X and Y. For each unit of each product produced, money must be spent on materials, labor and overhead.

Cost per unit	Product X	Product Y
Materials	Rs. 450	Rs. 400
Labor	Rs. 250	Rs. 350
Overhead	Rs. 150	Rs. 150

The production vector $\mathrm{x}=\left[\begin{array}{l}x 1 \\ x 2\end{array}\right]$ whereas, x 1 and x 2 are total number of units for product A and B i.e. 1000 and 500 respectively.
a. Find the total cost.
b. Explain the linear transformation properties with the help of above problem as an example.

- $T(u+v)=T(u)+T(v)$
- $T(c u)=c T(u)$

3. What are the four main things we need to define for a vector space? Which of the following is a vector space over R? For those that are not vector spaces, modify one part of the definition to make it into a vector space.
a. $V=\{2 \times 2$ matrices with entries in $R\}$, usual matrix addition, and

$$
k \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k a & b \\
k c & d
\end{array}\right) \text { for } k \in R
$$

b. $\mathrm{V}=\{$ Polynomials with complex coefficients of degrees $\leq 3\}$, with usual addition and scalar multiplication of polynomials.
4. Determinants: Let $\mathrm{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix.
a. For which values of det M does M have an inverse?
b. Write down all 2×2 bit matrices with determinant 1. (Remember bits are either 0 or 1 and $1+1=0$ in bits)
c. Write down 2×2 bit matrices with determinant 0
d. Compute det A for below 3×3 matrix.

$$
A=\left(\begin{array}{ccc}
I D 1 & I D 1 & I D 1 \\
I D 2 & I D 3 & I D 2 \\
I D 4 & I D 1 & I D 5
\end{array}\right)
$$

