

MAGNETIC FIELDS DUE TO CURRENTS

Abstract

2, WHAT IS PHYSICS?

One basic observation of physics is that a moving charged particle produces a magnetic field around itself. Thus a current of moving charged particles produces a magnetic field around the current. This feature of electromagnetism, which is the combined study of electric and magnetic effects, came as a surprise to the people who discovered it. Surprise or not, this feature has become enormously important in everyday life because it is the basis of countless electromagnetic devices. For example, a magnetic field is produced in maglev trains and other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in a very small section of current-carrying wire. Then we shall find the magnetic field due to the entire wire for several different arrangements of the wire.

29-2 Calculating the Magnetic Field Due to a Current

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find the magnetic field \vec{B} at a nearby point P. We first mentally divide the wire into differential elements $d s$ and then define for each element a length vector $d \vec{s}$ that has length $d s$ and whose direction is the direction of the current in $d s$. We can then define a differential current-length element to be $i d \bar{s}$; we wish to calculate the field $d \vec{B}$ produced at P by a typical current-length element. From experiment we find that magnetic fields, like electric fields, can be superimposed to find a net field. Thus, we can calculate the net field \vec{B} at P by summing, via integration, the

Fig. 29-1 A current-length element $i d \vec{s}$ produces a differential magnetic field $d \vec{B}$ at point P. The green \times (the tail of an arrow) at the dot for point P indicates that $d \vec{B}$ is directed into the page there.

This element of current creates a magnetic field at P, into the page.
contributions $d \vec{B}$ from all the current-length elements. However, this summation is more challenging than the process associated with electric fields because of a complexity; whereas a charge element $d q$ producing an electric field is a scalar, a current-length element $i d \vec{s}$ producing a magnetic field is a vector, being the product of a scalar and a vector.

The magnitude of the field $d \vec{B}$ produced at point P at distance r by a currentlength element $i d \vec{s}$ turns out to be

$$
\begin{equation*}
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}, \tag{29-1}
\end{equation*}
$$

where θ is the angle between the directions of $d \vec{s}$ and $\hat{\mathrm{r}}$, a unit vector that points from $d s$ toward P. Symbol μ_{0} is a constant, called the permeability constant, whose value is defined to be exactly

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \approx 1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} . \tag{29-2}
\end{equation*}
$$

The direction of $d \vec{B}$, shown as being into the page in Fig. 29-1, is that of the cross product $d \vec{s} \times \hat{\mathrm{r}}$. We can therefore write Eq. $29-1$ in vector form as

$$
\begin{equation*}
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{\mathrm{r}}}{r^{2}} \quad \text { (Biot-Savart law). } \tag{29-3}
\end{equation*}
$$

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot and Savart (rhymes with "Leo and bazaar"). The law, which is experimentally deduced, is an inverse-square law. We shall use this law to calculate the net magnetic field \vec{B} produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire

Shortly we shall use the law of Biot and Savart to prove that the magnitude of the magnetic field at a perpendicular distance R from a long (infinite) straight wire carrying a current i is given by

$$
\begin{equation*}
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (long straight wire). } \tag{29-4}
\end{equation*}
$$

The field magnitude B in Eq. 29-4 depends only on the current and the perpendicular distance R of the point from the wire. We shall show in our derivation that the field lines of \vec{B} form concentric circles around the wire, as Fig. 29-2 shows and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines in Fig. 29-2 with increasing distance from the wire represents the $1 / R$ decrease in the magnitude of \vec{B} predicted by Eq. 29-4. The lengths of the two vectors \vec{B} in the figure also show the $1 / R$ decrease.

Fig. 29-3 Iron filings that have been sprinkled onto cardboard collect in concentric circles when current is sent through the central wire. The alignment, which is along magnetic field lines, is caused by the magnetic field produced by the current. (Courtesy Education Development Center)

The magnetic field vector at any point is tangent to a circle.

Fig. 29-2 The magnetic field lines produced by a current in a long straight wire form concentric circles around the wire. Here the current is into the page, as indicated by the \times.

