

CURRENT AND RESISTANCE

WHAT IS PHYSICS?

In the last five chapters we discussed electrostatics - the physics of stationary charges. In this and the next chapter, we discuss the physics of electric currents - that is, charges in motion.

Examples of electric currents abound and involve many professions. Meteorologists are concerned with lightning and with the less dramatic slow flow of charge through the atmosphere. Biologists, physiologists, and engineers working in medical technology are concerned with the nerve currents that control muscles and especially with how those currents can be reestablished after spinal cord injuries. Electrical engineers are concerned with countless electrical systems, such as power systems, lightning protection systems, information storage systems, and music systems. Space engineers monitor and study the flow of charged particles from our Sun because that flow can wipe out telecommunication systems in orbit and even power transmission systems on the ground.

In this chapter we discuss the basic physics of electric currents and why they can be established in some materials but not in others. We begin with the meaning of electric current.

26-2 Electric Current

Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current through a given surface, there must be a net flow of charge through that surface. Two examples clarify our meaning.

1. The free electrons (conduction electrons) in an isolated length of copper wire are in random motion at speeds of the order of $10^{6} \mathrm{~m} / \mathrm{s}$. If you pass a hypothetical plane through such a wire, conduction electrons pass through it in both directions at the rate of many billions per second-but there is no net transport of charge and thus no current through the wire. However, if you connect the ends of the wire to a battery, you slightly bias the flow in one direction, with the result that there now is a net transport of charge and thus an electric current through the wire.
2. The flow of water through a garden hose represents the directed flow of positive charge (the protons in the water molecules) at a rate of perhaps several million coulombs per second. There is no net transport of charge, however, because there is a parallel flow of negative charge (the electrons in the water molecules) of exactly the same amount moving in exactly the same direction.
In this chapter we restrict ourselves largely to the study-within the framework of classical physics - of steady currents of conduction electrons moving through metallic conductors such as copper wires.

As Fig. 26-1a reminds us, any isolated conducting loop-regardless of whether it has an excess charge-is all at the same potential. No electric field can exist within it or along its surface. Although conduction electrons are available, no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no longer at a single potential. Electric fields act inside the material making up the loop, exerting forces on the conduction electrons, causing them to move and thus establishing a current. After a very short time, the electron flow reaches a constant value and the current is in its steady state (it does not vary with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in which current has been established. If charge $d q$ passes through a hypothetical plane (such as $a a^{\prime}$) in time $d t$, then the current i through that plane is defined as

$$
\begin{equation*}
i=\frac{d q}{d t} \quad \text { (definition of current) } \tag{26-1}
\end{equation*}
$$

We can find the charge that passes through the plane in a time interval extending from 0 to t by integration:

$$
\begin{equation*}
q=\int d q=\int_{0}^{t} i d t \tag{26-2}
\end{equation*}
$$

in which the current i may vary with time.

Fig. 26-2 The current i through the conductor has the same value at planes $a a^{\prime}, b b^{\prime}$, and $c c^{\prime}$.

Under steady-state conditions, the current is the same for planes $a a^{\prime}, b b^{\prime}$, and $c c^{\prime}$ and indeed for all planes that pass completely through the conductor, no matter what their location or orientation. This follows from the fact that charge is conserved. Under the steady-state conditions assumed here, an electron must pass through plane $a a^{\prime}$ for every electron that passes through plane $c c^{\prime}$. In the same way, if we have a steady flow of water through a garden hose, a drop of water must leave the nozzle for every drop that enters the hose at the other end. The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which is an SI base unit:

$$
1 \text { ampere }=1 \mathrm{~A}=1 \text { coulomb per second }=1 \mathrm{C} / \mathrm{s} .
$$

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with an arrow to indicate that charge is moving. Such arrows are not vectors, however, and they do not require vector addition. Figure $26-3 a$ shows a conductor with current i_{0} splitting at a junction into two branches. Because charge is conserved, the magnitudes of the currents in the branches must add to yield the magnitude of the current in the original conductor, so that

$$
\begin{equation*}
i_{0}=i_{1}+i_{2} . \tag{26-3}
\end{equation*}
$$

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow along a conductor, not a direction in space.

Fig. 26-1 (a) A loop of copper in electrostatic equilibrium. The entire loop is at a single potential, and the electric field is zero at all points inside the copper. (b) Adding a battery imposes an electric potential difference between the ends of the loop that are connected to the terminals of the battery. The battery thus produces an electric field within the loop, from terminal to terminal, and the field causes charges to move around the loop. This movement of charges is a current i.

The current into the junction must equal the current out

Fig. 26-3 The relation $i_{0}=i_{1}+i_{2}$ is true at junction a no matter what the orientation in space of the three wires. Currents are scalars, not vectors.

The Directions of Currents

In Fig. 26-1 b we drew the current arrows in the direction in which positively charged particles would be forced to move through the loop by the electric field. Such positive charge carriers, as they are often called, would move away from the positive battery terminal and toward the negative terminal. Actually, the charge carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively charged. The electric field forces them to move in the direction opposite the current arrows, from the negative terminal to the positive terminal. For historical reasons, however, we use the following convention:

A current arrow is drawn in the direction in which positive charge carriers would move, even if the actual charge carriers are negative and move in the opposite direction.

We can use this convention because in most situations, the assumed motion of positive charge carriers in one direction has the same effect as the actual motion of negative charge carriers in the opposite direction. (When the effect is not the same, we shall drop the convention and describe the actual motion.)

CHECKPOINT 1

The figure here shows a portion of a circuit. What are the magnitude and direction of the current i in the lower right-hand wire?

Samplemenorehi

Current is the rate at which charge passes a point

Water flows through a garden hose at a volume flow rate $d V / d t$ of $450 \mathrm{~cm}^{3} / \mathrm{s}$. What is the current of negative charge?

The current i of negative charge is due to the electrons in the water molecules moving through the hose. The current is the rate at which that negative charge passes through any plane that cuts completely across the hose.

Calculations: We can write the current in terms of the number of molecules that pass through such a plane per sec. ond as

$$
i=\left(\begin{array}{c}
\text { charge } \\
\text { per } \\
\text { electron }
\end{array}\right)\left(\begin{array}{c}
\text { electrons } \\
\text { per } \\
\text { molecule }
\end{array}\right)\left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { second }
\end{array}\right)
$$

or

$$
i=(e)(10) \frac{d N}{d t}
$$

We substitute 10 electrons per molecule because a water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecule contains 8 electrons in the single oxygen atom and 1 electron in each of the two hydrogen atoms.

We can express the rate $d N / d t$ in terms of the given volume flow rate $d V / d t$ by first writing

$$
\begin{aligned}
\left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { second }
\end{array}\right)= & \left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { mole }
\end{array}\right)\left(\begin{array}{c}
\text { moles } \\
\text { per unit } \\
\text { mass }
\end{array}\right) \\
& \times\left(\begin{array}{c}
\text { mass } \\
\text { per unit } \\
\text { volume }
\end{array}\right)\left(\begin{array}{c}
\text { volume } \\
\text { per } \\
\text { second }
\end{array}\right) .
\end{aligned}
$$

"Molecules per mole" is Avogadro's number N_{A}. "Moles per unit mass" is the inverse of the mass per mole, which is the molar mass M of water. "Mass per unit volume" is the (mass) density $\rho_{\text {mass }}$ of water. The volume per second is the volume flow rate $d V / d t$. Thus, we have

$$
\frac{d N}{d t}=N_{\mathrm{A}}\left(\frac{1}{M}\right) \rho_{\mathrm{mass}}\left(\frac{d V}{d t}\right)=\frac{N_{\mathrm{A}} \rho_{\mathrm{mass}}}{M} \frac{d V}{d t}
$$

Substituting this into the equation for i, we find

$$
i=10 e N_{\mathrm{A}} M^{-1} \rho_{\mathrm{mass}} \frac{d V}{d t}
$$

We know that Avogadro's number N_{A} is 6.02×10^{23} molecules $/ \mathrm{mol}$, or $6.02 \times 10^{23} \mathrm{~mol}^{-1}$, and from Table $15-1$ we know that the density of water $\rho_{\text {mass }}$ under normal conditions is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. We can get the molar mass of water from the molar masses listed in Appendix F (in grams per mole): We add the molar mass of oxygen ($16 \mathrm{~g} / \mathrm{mol}$) to twice the molar mass of hydrogen ($1 \mathrm{~g} / \mathrm{mol}$), obtaining 18 $\mathrm{g} / \mathrm{mol}=0.018 \mathrm{~kg} / \mathrm{mol}$. So, the current of negative charge due to the electrons in the water is

$$
\begin{aligned}
i= & (10)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right) \\
& \times(0.018 \mathrm{~kg} / \mathrm{mol})^{-1}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(450 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}\right) \\
= & 2.41 \times 10^{7} \mathrm{C} / \mathrm{s}=2.41 \times 10^{7} \mathrm{~A} \\
= & 24.1 \mathrm{MA} .
\end{aligned}
$$

This current of negative charge is exactly compensated by a current of positive charge associated with the nuclei of the three atoms that make up the water molecule. Thus, there is no net flow of charge through the hose.

26-3 Current Density

Sometimes we are interested in the current i in a particular conductor. At other times we take a localized view and study the flow of charge through a cross section of the conductor at a particular point. To describe this flow, we can use the current density \vec{J}, which has the same direction as the velocity of the moving charges if they are positive and the opposite direction if they are negative. For each element of the cross section, the magnitude J is equal to the current per unit area through that element. We can write the amount of current through the element as $\vec{J} \cdot d \vec{A}$, where $d \vec{A}$ is the area vector of the element, perpendicular to the element. The total current through the surface is then

$$
\begin{equation*}
i=\int \vec{J} \cdot d \vec{A} \tag{26-4}
\end{equation*}
$$

If the current is uniform across the surface and parallel to $d \vec{A}$, then \vec{J} is also uniform and parallel to $d \vec{A}$. Then Eq. 26-4 becomes

So

$$
\begin{align*}
i=\int J d A & =J \int d A=J A \\
J & =\frac{i}{A} \tag{26-5}
\end{align*}
$$

where A is the total area of the surface. From Eq. $26-4$ or $26-5$ we see that the SI unit for current density is the ampere per square meter $\left(\mathrm{A} / \mathrm{m}^{2}\right)$.

In Chapter 22 we saw that we can represent an electric field with electric field lines. Figure 26-4 shows how current density can be represented with a similar set of lines, which we can call streamlines. The current, which is toward the right in Fig. 26-4, makes a transition from the wider conductor at the left to the narrower conductor at the right. Because charge is conserved during the transition, the amount of charge and thus the amount of current cannot change. However, the current density does change-it is greater in the narrower conductor. The spacing of the streamlines suggests this increase in current density; streamlines that are closer together imply greater current density.

DriftSpeed

When a conductor does not have a current through it, its conduction electrons move randomly, with no net motion in any direction. When the conductor does have a current through it, these electrons actually still move randomly, but now

Fig. 26-4 Streamlines representing current density in the flow of charge through a constricted conductor.

