

ELECTRIC POTENTIAL

Abstract

$24-$ WHAT IS PHYSICS? a force is conservative-that is, whether a potential energy can be associated with it. The motivation for associating a potential energy with a force is that we can then apply the principle of the conservation of mechanical energy to closed systems involving the force. This extremely powerful principle allows us to calculate the results of experiments for which force calculations alone would be very difficult. Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric potential energy. In this chapter we first define this type of potential energy and then put it to use.

24-2 Electric Potential Energy

When an electrostatic force acts between two or more charged particles within a system of particles, we can assign an electric potential energy U to the system. If the system changes its configuration from an initial state i to a different final state f, the electrostatic force does work W on the particles. From Eq. 8-1, we then know that the resulting change ΔU in the potential energy of the system is

$$
\begin{equation*}
\Delta U=U_{f}-U_{i}=-W . \tag{24-1}
\end{equation*}
$$

As with other conservative forces, the work done by the electrostatic force is path independent. Suppose a charged particle within the system moves from point i to point f while an electrostatic force between it and the rest of the system acts on it. Provided the rest of the system does not change, the work W done by the force on the particle is the same for all paths between points i and f.

For convenience, we usually take the reference configuration of a system of charged particles to be that in which the particles are all infinitely separated from one another. Also, we usually set the corresponding reference potential energy to be zero. Suppose that several charged particles come together from initially infinite separations (state i) to form a system of neighboring particles (state f). Let the initial potential energy U_{i} be zero, and let W_{∞} represent the work done by the electrostatic forces between the particles during the move in from infinity. Then from Eq. 24-1, the final potential energy U of the system is

$$
\begin{equation*}
U=-W_{\infty} . \tag{24-2}
\end{equation*}
$$

CHECKPOINT 1

In the figure, a proton moves from point i to point f in a uniform electric field directed as shown. (a) Does the electric field do positive or negative work on the proton?

(b) Does the electric potential energy of the proton increase or decrease?

Sample proflem

Work and potential energy in an electric field

Electrons are continually being knocked out of air molecules in the atmosphere by cosmic-ray particles coming in from space. Once released, each electron experiences an electrostatic force \vec{F} due to the electric field \vec{E} that is produced in the atmosphere by charged particles already on Earth. Near Earth's surface the electric field has the magnitude $E=150 \mathrm{~N} / \mathrm{C}$ and is directed downward. What is the change ΔU in the electric potential energy of a released electron when the electrostatic force causes it to move vertically upward through a distance $d=520 \mathrm{~m}$ (Fig. 24-1)?

revele EAS

(1) The change ΔU in the electric potential energy of the electron is related to the work W done on the electron by the electric field. Equation 24-1 $(\Delta U=-W)$ gives the relation.

Fig. 24-1 An electron in the atmosphere is moved upward through displacement \vec{d} by an electrostatic force \vec{F} due to an electric field \vec{E}.
(2) The work done by a constant force \vec{F} on a particle undergoing a displacement \vec{d} is

$$
\begin{equation*}
W=\vec{F} \cdot \vec{d} \tag{24-3}
\end{equation*}
$$

(3) The electrostatic force and the electric field are related by the force equation $\vec{F}=q \vec{E}$, where here q is the charge of an electron $\left(=-1.6 \times 10^{-19} \mathrm{C}\right)$.

Calculations: Substituting for \vec{F} in Eq. 24-3 and taking the dot product yield

$$
\begin{equation*}
W=q \vec{E} \cdot \vec{d}=q E d \cos \theta \tag{24-4}
\end{equation*}
$$

where θ is the angle between the directions of \vec{E} and \vec{d}. The field \vec{E} is directed downward and the displacement \vec{d} is directed upward; so $\theta=180^{\circ}$. Substituting this and other data into Eq. 24-4, we find

$$
\begin{aligned}
W & =\left(-1.6 \times 10^{-19} \mathrm{C}\right)(150 \mathrm{~N} / \mathrm{C})(520 \mathrm{~m}) \cos 180^{\circ} \\
& =1.2 \times 10^{-14} \mathrm{~J}
\end{aligned}
$$

Equation 24-1 then yields

$$
\Delta U=-W=-1.2 \times 10^{-14} \mathrm{~J}
$$

(Answer)
This result tells us that during the 520 m ascent, the electric potential energy of the electron decreases by $1.2 \times 10^{-14} \mathrm{~J}$.

Additional examples, video, and practice available at WileyPLUS

24-3 Electric Potential

The potential energy of a charged particle in an electric field depends on the charge magnitude. However, the potential energy per unit charge has a unique value at any point in an electric field.

For an example of this, suppose we place a test particle of positive charge $1.60 \times 10^{-19} \mathrm{C}$ at a point in an electric field where the particle has an electric potential energy of $2.40 \times 10^{-17} \mathrm{~J}$. Then the potential energy per unit charge is

$$
\frac{2.40 \times 10^{-17} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{C}}=150 \mathrm{~J} / \mathrm{C}
$$

Next, suppose we replace that test particle with one having twice as much positive charge, $3.20 \times 10^{-19} \mathrm{C}$. We would find that the second particle has an electric potential energy of $4.80 \times 10^{-17} \mathrm{~J}$, twice that of the first particle. However, the potential energy per unit charge would be the same, still $150 \mathrm{~J} / \mathrm{C}$.

Thus, the potential energy per unit charge, which can be symbolized as U / q, is independent of the charge q of the particle we happen to use and is characteristic only of the electric field we are investigating. The potential energy per unit charge at a point in an electric field is called the electric potential V (or simply the potential) at that point. Thus,

$$
\begin{equation*}
V=\frac{U}{q} \tag{24-5}
\end{equation*}
$$

Note that electric potential is a scalar, not a vector:

