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Flux through a closed cube, nonuniform field

A nonuniform electric field given by E =3.0x + 4.0
pierces the Gaussian cube shown in Fig, 23-54. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

We can find the flux ® through the surface by integrating the
scalar product E + dA over each face.

Right face: An area vector 4 is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector dA for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and ¢, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

dA = dAi.
From Eq.23-4, the flux ®, through the right face is then

o, = fE).dZ = f(3.0x§ + 4.07) - (dAd)
) f [(3.0x)(@A)i 1 + (4.0)(dA)] -1]

= f (3.0xdA + 0) = 3.0fdi.

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x = 3.0 m. This means we can substitute that constant value

for x. This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

@, = 3.0 f (3.0) dA = 9.0 f dA.

The integral [ dA merely gives us the area A = 4.0 m? of the
right face; so

®, = (9.0N/C)(4.0 m?) =36 N-m?%C.  (Answer)
Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector dA points in
the negative direction of the x axis, and thus dA = —dAl
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x = 1.0 m. With these two
changes, we find that the flux ®, through the left face is

@, = —-12N-m%C. (Answer)

Top face: The differential area vector ¢4 points in the posi-

tive direction of the y axis, and thus d4 = dA] (Fig.23-5e).
The flux &, through the top face is then

o, = J (3.0x1 + 4.0)) - (dA})
= f [(3.0x)(dA)i - ] + (4.0)(dA)] ]]

=f(0+4.0dA) =4.0fdA

= 16 N-m?%C. (Answer)

IQN'LL”U"S Additional examples, video, and practice available at WileyPLUS

03-4 Gauss’ Law

Gauss’ law relates the net flux @ of an electric field through a closed surface
(a Gaussian surface) to the net charge g, that is enclosed by that surface. It tells us that

SO(D = Genc (23'6)

(Gauss’ law),

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

80§ E-dA = Jene  (Gauss’ law), (23-7)
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vector that is perpendicular to the area. (c) and gives outward flux.
Right face: the x component of the field pierces  The dot product is positive.

the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the

. x component of the field produces negative (in-
ward) flux. (¢) Top face: the y component of the
field produces positive (outward) flux.

(e)

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25, we modify Gauss’
law to include situations in which a material such as mica, oil, or glass is present.

In Egs. 23-6 and 23-7, the net charge g, is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero. We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If g, is positive, the net flux is outward, if q., is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term g.,. in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

. dot product is just zero.
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Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S
encloses the positive charge. Surface
S, encloses the negative charge.
Surface S encloses no charge. Surface
S, encloses both charges and thus no
net charge.

matter on the right side of Egs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity E on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section, Let us consider each in turn.

Surface S,. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if ® is
positive, g,,. must be also.)

Surface S,. The electricfield is inward for all points on this surface. Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S;.  This surface encloses no charge, and thus g.,, = 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S,. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S, as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S, in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.

@CH ECKPOINT 2

The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N :m?C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?




