Iqra National University, Peshawar Department of Electrical Engineering

Mid - Term Examinationsummer2020

Date:20/8/2020

Note: Attempt all questions.PLO: program learning outcome C:Cognitive Name: Fawad Ahmad (13204)

Q1.	(a)	. Let $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & -2\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 4 \\ 3 & -1 \\ -2 & 2\end{array}\right]$. Identify the (3,2) entry of AB .	$\begin{array}{\|l\|} \hline \text { Marks 5 } \\ \hline \text { PLO1 } \\ \text { C1 } \\ \hline \end{array}$
	(b)		Marks 5
		Label the quadratic polynomial that interpolate the points (1,3), (2,4), (3,4)	$\begin{array}{\|l\|} \hline \text { PLO1 } \\ \text { C1 } \end{array}$
Q2	(a)	. If A and B are $n \times n$ matrices where $\|A\|=2$ and $\|B\|=-3$, calculate $\left\|A^{-1} \mathrm{~B}^{\mathrm{T}}\right\|$.	$\begin{array}{\|l} \hline \text { Marks 5 } \\ \hline \text { PLO2 } \\ \text { C2 } \end{array}$
	(b)	Estimate the linear system of equation $\begin{aligned} & x+y+2 z=1 \\ & \quad x-2 y+z=-5 \\ & 3 x+y+z=3 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Marks 5 } \\ \hline \text { PLO2 } \\ \text { C2 } \\ \hline \end{array}$
Q3		Find A^{-1} where $A=\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]$.	$\begin{array}{\|l\|} \hline \text { Marks } \\ 10 \\ \hline \text { PLO2 } \\ \text { C2 } \\ \hline \end{array}$

Name: FAWAD AHMAD - ID: 13204
(1)

Ques \# 1 (A) Fawad Ahmad (13204)

Sol:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
4 & 2 & 1 \\
0 & 1 & -2
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 4 \\
3 & -1 \\
-2 & 2
\end{array}\right]
$$

Row 3 (A) and Column 2 (B)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & -2
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]} \\
& =(0 \times 4)+(1 \times-1)+(-2 \times 2) \\
& =0+(-1)+(-4) \\
& =0-1-4 \\
& =-5 \text { Answer }
\end{aligned}
$$

$$
x-x-x
$$

Question: 1 (B)

$\frac{\mid}{}$| Que | |
| :--- | :--- |
| Sol :- | Points $=(1,3)(2,4)(3,4)$ |

As $a_{2} x_{1}^{2}+a_{1} x_{1}+a_{0}=y_{1}$

$$
\begin{aligned}
& a_{2} x_{2}^{2}+a_{1} x_{2}+a_{0}=y_{2} \\
& a_{3} x_{3}^{2}+a_{1} x_{3}+a_{2}=y_{3}
\end{aligned}
$$

Now $\left(x_{1}, y_{1}\right)=(1,3),\left(x_{2}, y_{2}\right)=(2,4)$
$\left(x_{3}, y_{3}\right)=(3,4)$ Put in Above E2

$$
\begin{aligned}
& a_{2}(1)^{2}+a_{1}(1)+a_{0}=3 \\
& a_{2}(2)^{2}+a_{1}(2)+a_{0}=4 \\
& a_{2}(3)^{2}+a_{1}(3)+a_{0}=4
\end{aligned}
$$

$$
a_{2}+a_{1}+a_{0}=3
$$

$$
4 a_{2}+2 a_{1}+a_{0}=4
$$

$$
9 a_{2}+3 a_{1}+a_{0}=4
$$

$$
A_{b}=\left[\begin{array}{lll:l}
1 & 1 & 1 & 3 \\
4 & 2 & 1 & 4 \\
9 & 3 & 1 & 4
\end{array}\right]
$$

Now

$$
\left.\begin{array}{l}
\text { Vaw } a_{2}+a_{1}+a_{0}=3 \\
a_{2}+\left(-\frac{9}{2}\right)+1=3 \\
a_{2}=\frac{-9}{2}-1=3 \\
a_{2}=\frac{-9-2}{2}=3 \\
a_{2}=\frac{11}{2}=3
\end{array}\right\} \begin{aligned}
& a_{2}=3+\frac{11}{2} \\
& a_{2}=\frac{6+11}{2} \\
& a_{2}=\frac{17}{2}
\end{aligned}
$$

$\left[\begin{array}{ll}\text { Q2 (A) } & \text { (4) } \\ \left.\begin{array}{ll}\text { Soluation :- } & \text { Ahmrad (13204) } \\ & \left|A^{-1} B^{t}\right|=\left|A^{-1}\right|\left|B^{t}\right| \\ \text { Since } & =\frac{1}{|A|}|B| \\ & \text { Beense }\left|B^{t}\right|=|B|\end{array} \right\rvert\,\end{array}\right.$

So

$$
\begin{aligned}
& \left|A^{-1} B^{t}\right|=\frac{1}{|A|}|B| \\
& =\frac{1}{2} \cdot 3=\frac{3}{2} \text { Amor }
\end{aligned}
$$

Question: 2 (B)

Que \# 2 (B)
Sol:-

$$
\begin{aligned}
& x+y+2 z=1 \\
& x-2 y+z=-5 \\
& 3 x+y+z=3
\end{aligned}
$$

$$
\left[\begin{array}{ccc:c}
1 & 1 & 2 & 1 \\
1 & -2 & 1 & -5 \\
3 & 1 & 1 & 3
\end{array}\right] R_{3}-3 R_{1}
$$

$$
R\left[\begin{array}{ccc:c}
1 & 1 & 2 & 2 \\
0 & -3 & -1 & -6 \\
0 & -2 & -5 & 0
\end{array}\right] R_{2}-R_{1}
$$

$$
\begin{array}{rlll}
3 & 1 & 1 / 3 \\
-3 & 3 & 6 / 3 \\
\hline 0 & -2 & -5 / 0 \\
1 & -2 & 1 /-5 \\
-11 & 2 /-7 \\
\hline 0 & -3 & -1 /-6
\end{array}
$$

From Above Matrix

$$
\begin{aligned}
& -3 y-2=-6 \rightarrow \Sigma_{r}(1) \\
& -2 y-5=0 \rightarrow \Sigma_{r}(2)
\end{aligned}
$$

muliply Σ_{v} (1) by $\Sigma_{r}(2)$ and $E x$ (2) by (3)
we vet

$$
\begin{aligned}
& -6 y-2 z=-12 \rightarrow \Sigma r \text { (3) } \\
& -6 y-15 z=0 \rightarrow \text { Er (4) }
\end{aligned}
$$

Solution:-

$$
\begin{aligned}
& \quad|A|=\left[\begin{array}{ccc}
3 & -2 & 1 \\
5 & 6 & 2 \\
1 & 0 & -3
\end{array}\right] \\
& =3\left|\begin{array}{rr}
-2 & 1 \\
6 & 2
\end{array}\right|+2\left|\begin{array}{cc}
5 & 2 \\
1 & -3
\end{array}\right|+\left|\begin{array}{cc}
5 & 6 \\
1 & 0
\end{array}\right| \\
& =3(-4-6)+2(-15-2)+(0-6) \\
& |A|=-94
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \left.\begin{array}{l}
A_{11}^{1+1}=(-1)^{6}
\end{array} \right\rvert\, \begin{array}{ll}
6 & 3 \\
0 & 3
\end{array}=-18 \\
& A_{12}=(-1)^{1+2}\left|\begin{array}{cc}
5 & 2 \\
1 & -3
\end{array}\right|=17 \\
& A_{13}=(-1)^{1+3}\left|\begin{array}{cc}
5 & 6 \\
1 & 0
\end{array}\right|=-6 \\
& A_{21}=(-1)^{2+1}\left|\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right|=-6
\end{aligned}
$$

$$
\begin{aligned}
& A_{22}=(-1)^{2+2}\left|\begin{array}{ll}
3 & 1 \\
1 & -3
\end{array}\right|=-10 \\
& A_{23}=(-1)^{2+3}\left|\begin{array}{ll}
3 & -2 \\
1 & 0
\end{array}\right|=-2 \\
& A_{31}=(-1)^{3+1}\left|\begin{array}{cc}
-2 & 1 \\
0 & 2
\end{array}\right|=-10 \\
& A_{32}=(-1)^{3+2}\left|\begin{array}{cc}
3 & 1 \\
5 & 2
\end{array}\right|=-1 \\
& A_{33}=(-1)^{3+3}\left|\begin{array}{cc}
3 & -2 \\
5 & 6
\end{array}\right|=28 \\
& A_{d j} A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
&=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23}
\end{array}\right]
\end{aligned}
$$

