


Course Code:	MTH 101		Course Title:	Linear Algebra
Prerequisite:	NA		Instructor:	HIMAYTULLAH
Module:	1 Program	n: BEE	Total Marks: 30	Time Allowed:

Note: Attempt all questions.PLO: program learning outcome C:Cognitive Name: Fawad Ahmad (13204)

Q1.	(a)	Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 3 & -1 \\ -2 & 2 \end{bmatrix}$. Identify the (3,2) entry of AB.	Marks 5				
		$A = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -1 \\ 2 & 2 \end{bmatrix}$. Identify the (3,2) entry of AB.	PLO1				
			C1				
	(b)		Marks 5				
		<u>Label</u> the quadratic polynomial that interpolate the points $(1,3)$, $(2,4)$, $(3,4)$					
Q2	(a)		Marks 5				
x -	()	. If A and B are $n \times n$ matrices where $ A = 2$ and $ B = -3$, calculate $ A^{-1}B^{T} $.	PLO2				
			C2				
	(b)	Estimate the linear system of equation	Marks 5				
			PLO2 C2				
		x + y + 2z = 1	C2				
		x - 2y + z = -5					
		x - 2y + 2 = -3					
		3x + y + z = 3					
		50 0 13					
Q3		Find A^{-1} where $A = \begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix}$.	Marks 10				
		$\begin{array}{c c} Find A & where A = \begin{bmatrix} 5 & 6 & 2 \\ 1 & 0 & 2 \end{bmatrix}$	PLO2				
		11 0 - 51	C2				

Name: FAWAD AHMAD – ID: 13204

Question: 1 (B)

$$\begin{array}{c} \boxed{3} \\ \end{array} \\ = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -\partial & -3 \\ 0 & -\partial & -3 \\ 0 & -6 & -8 \\ 0 & -6 & -8 \\ -23 \\ \end{array} \end{pmatrix} \begin{pmatrix} R_2 - 4R_1 \\ R_3 - qR_1 \\ R_3 - qR_1 \\ -4 & 4 & 4 \\ 4 & 9 \\ 2 & 0 \\ \hline -3 & -3 \\ -8 \\ -2 & -3 \\ -8 \\ -2 & -3 \\ -8 \\ -2 & -3 \\ -8 \\ -2 & -3 \\ -8 \\ -2 & -4 \\ -2 & -4 \\ -3 \\$$

Question: 2 (A)

4 Fawad Ahmad (13204) $Q_{\mathcal{F}}(A)$ Salution :-|A'B'| = |A''|B'|Since = $\frac{1}{|A|}$ |B| Bease $|B^{\dagger}| = |B|$ So |A'Bt = 1 IAI |B| $=\frac{1}{2}\cdot 3=\frac{3}{2}$ Away

(5)

$$\begin{array}{c}
 & (3) \\
\hline &$$

$$6$$
Now Subtrait $z_{T}(0) \xrightarrow{2} tom \quad \xi_{T}(3)$

$$-\frac{6}{17} - \frac{3}{15}z = 0$$

$$\frac{-6}{17} - \frac{15}{15}z = 0$$

$$\frac{-13}{15}z = -13$$

$$Z = \frac{-13}{13}$$
Now $7 tom \quad \xi_{T}(3)$

$$-\frac{3}{15}y - 5z = 0$$

$$-\frac{3}{15}y - 5(\frac{-12}{13}) = 0$$

$$-\frac{3}{15}y + \frac{60}{13} = 0$$

$$+\frac{3}{15}y = \frac{460}{13}$$

$$\frac{7}{15} = \frac{60}{13}$$

$$\frac{7}{15} = \frac{60}{13}$$

$$\frac{7}{15} = \frac{60}{13}$$

$$\frac{7}{15} = \frac{30}{13}$$

$$\frac{7}{15} = \frac{30}{13}$$

$$\frac{7}{15} = \frac{30}{13}$$

$$\frac{7}{15} = \frac{18}{13}$$

$$\frac{7}{15} = \frac{18}{13}$$

$$\frac{7}{15} = \frac{18}{13}$$

Question: 3						
	Ŧ					
	Q(3)					
	Solution :-					
	$ A = \begin{bmatrix} 3 & -3 & 1 \\ 5 & 4 & 3 \\ 1 & 0 & -3 \end{bmatrix}$	Trada				
	$= 3 \begin{vmatrix} -2 & 1 \\ -2 & 1 \\ -3 \end{vmatrix} + 2 \begin{vmatrix} 5 & 2 \\ 1 & -3 \end{vmatrix} + \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix}$					
	= 3(-4-6) + 2(-15-10) + (0-6)					
	A = -94	· · ·				
	Now $1+1 6 = 2 = -18$ A11 = (-1) 0 = 3 = -18					
	$A_{12} = (-1)^{1+2} \begin{vmatrix} 5 & 2 \\ 1 & -3 \end{vmatrix} = 17$					
	$A_{13} = \begin{pmatrix} -1 \end{pmatrix}^{1+3} \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix} = -6$					
	$A_{21} = \begin{pmatrix} -1 \end{pmatrix}^{2+1} \begin{pmatrix} -2 & 1 \\ 0 & -3 \end{pmatrix} = -6$					
		al in				

$$\begin{cases} \$ \end{cases}$$

$$\begin{array}{c} A_{222} = (-1)^{2+12} & 3 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \\ \end{array} = -16 \\ R_{23} = (-1)^{2+3} & 3 & -2 \\ 1 & 0 & 1 \\ \end{array} = -2 \\ A_{31} = (-1)^{3+1} & -2 & 1 \\ 0 & 2 & 1 \\ \end{array} = -16 \\ A_{32} = (-1)^{3+3} & 3 & 1 \\ S & 2 & 1 \\ \end{array} = -1 \\ A_{32} = (-1)^{3+3} & 3 & -2 \\ S & 6 & 1 \\ \end{array} = -1 \\ A_{32} = (-1)^{3+3} & 3 & -2 \\ S & 6 & 1 \\ \end{array} = -1 \\ A_{32} = (-1)^{3+3} & 3 & -2 \\ S & 6 & 1 \\ \end{array} = -1 \\ A_{32} = (-1)^{3+3} & 3 & -2 \\ B_{31} & B_{32} & B_{33} \\ A_{31} & B_{32} & B_{33} \\ \end{array}$$

$$A^{-1} = \frac{1}{|A|} \quad adj A$$

$$A^{-1} = \frac{1}{|A|} \quad \begin{bmatrix} 18 & 6 & 10 \\ 17 & 10 & 1 \\ 6 & 2 & -22 \end{bmatrix}$$

$$- x - x - x - x$$

$$END \quad of \quad Papex$$