Course Code:
Course Title: Differential
Equations Instructor:
Engr. Latif Jan
Program: BS (CS-SE \& EE)
Total Marks: $\mathbf{5 0}$ Time Allowed: 120 minutes Note: Attempt all Questions:

Q 1: a) Define $2^{\text {nd }}$ order linear homogenous/non-homogenous differential equation along with examples?

Marks)

b) Solve the following $2^{\text {nd }}$ order Linear homogeneous /non-homogenous differential equation?

Marks)

i. $\quad 4 y^{\prime \prime}-6 y^{\prime}+7 y=0$
ii. $\quad y^{\prime \prime}-4 y^{\prime}-12 y=3 e^{\wedge}(5 x)$

Q2: Solve the followingIVP for the $2^{\text {nd }}$ orderlinearequations. Marks)

(i) $16 y^{\prime \prime}-40 y^{\prime}+25 y=0 \quad y(0)=3 y^{\prime}(0)=-9 / 4$
(ii) $y^{\prime \prime}+14 y^{\prime}+49 y=0 \quad y(-4)=-1 y^{\prime}(-4)=5$
(iii) $\mathrm{y}^{\prime \prime}-4 y^{\prime}+9 \mathrm{y}=0 \quad \mathrm{y}(0)=0 \mathrm{y}^{\prime}(0)=-8$
(iv) $y^{\prime \prime}-8 y^{\prime}+17 y=0 \quad y(0)=-4 y^{\prime}(0)=-1$

Q3: DefineLaplacetransformalongwithexample?

A. Find the Laplace transforms of the given functions.

Marks)

1. $f(t)=6\left(e^{\wedge}-5 t\right)+e^{\wedge} 3 t+5\left(t^{\wedge} 3\right)-9$
2. $g(t)=4 \cos (4 t)-9 \sin (4 t)+2 \cos (10 t)$
3. $h(t)=e^{\wedge} 3 t+\cos (6 t)-e^{\wedge}(3 t) \cos (6 t)$

Q4: Solve the following IVP using Laplace Transform. Marks)

(i) $y^{\prime \prime}-10 y^{\prime}+9 y=5 t, \quad y(0)=-1, y^{\prime}(0)=2$
(ii) $y^{\prime \prime}-6 y^{\prime}+15 y=2 \sin (3 t)$,
$y(0)=-1 \quad y^{\prime}(0)=-4$
M. Fabian Ali

Farhan Ali

$$
13032
$$

Differential Equations

Question \# 01
Part (a)
\Rightarrow Homogenous 8- The differential Equation of any order is homogenous it once all the terms involving the unknown function are collected together on one side of the equation \& the other side is Identically zero.
Example $b^{-} \quad y^{\prime \prime}-2 y^{\prime}+y=0$
\Rightarrow Non Homogenous:-
The non homogenous equation has terms on both sides. This type of equation has the form of
Example:-

$$
y^{\prime \prime}+p y^{\prime}+q y=q(x)
$$ where P, Q are real no $\&$ can be real $\&$ complex.

Part (b)
(i) $4 y^{\prime \prime}-6 y^{\prime}+7 y=0$

Solution:-
For an equation $a y^{\prime}+b y^{\prime}+c y=0$ assume Solution of form $e^{x t}$ recurving equation with $y=e^{2 t}$

$$
\begin{gather*}
4\left[\left(e^{x t}\right)^{\prime \prime}\right]-6\left[\left(e^{x t}\right)^{\prime}\right]+7\left[e^{x t}\right]=0 \\
e^{x t}\left[4 x^{2}-6 x+7\right]=0 \tag{i}
\end{gather*}
$$

by Solving (i)

$$
\lambda=3 / 4+i \sqrt{19} / 4, \lambda=\frac{3}{4}-i \frac{\sqrt{19}}{4}
$$

2 Complex roots

$$
\gamma_{1} \neq \gamma_{2}
$$

where $\gamma_{1}=a+i \beta, \gamma_{2}=a$ - $i \beta$ the general Solution is

$$
y=e^{2 t}\left(C_{1} \cos (B t)+C_{2} \sin \beta t\right)
$$

(ii) $y^{\prime \prime}-4 y^{\prime}-12 y=3 e^{(5 x)}$

Solutions-

$$
-12 y(x)-4 \frac{d}{d x} y(x)+\frac{d^{2}}{d x^{2}} y(x)=3 e^{5 x}
$$

The differential equation has the form

$$
y^{\prime \prime}+p y^{\prime}+q y=5
$$

where,

$$
\begin{aligned}
& P=-4 \\
& q=-12 \\
& S=-3 e^{5 x}
\end{aligned}
$$

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

Find the root of the characteristics equation

$$
q+\left(k^{2}+k p\right)=0
$$

In

$$
\Rightarrow k^{2}-4 k-12=0
$$

The roots of this equation

$$
\begin{aligned}
& k_{1}=-2 \\
& k_{2}=6
\end{aligned}
$$

$$
\begin{aligned}
& y(x)=c_{1}^{k_{1} x}+c_{2}{ }^{k 2 x} \\
& y(x)=c_{1} e^{-2 x}+c_{2} e^{6 x}
\end{aligned}
$$

The general solution is:

$$
\begin{aligned}
& y(x)=c_{1}(x) e^{-2 x}+c_{2}(x) e^{6 x} \\
& y_{1}(x) \frac{d}{d x} c_{1}(x)+y_{2}(x) \frac{d}{d x} c_{2}(x)=0 \\
& \frac{d}{d x} c_{1}(x) \frac{d}{d x} y_{1}(x)+\frac{d}{d x} c_{2}(x) \frac{d}{d x} y 2(x)=0 \\
& \Rightarrow y_{1}(x)=\exp (-2 x) \quad\left(c_{1}=1, c_{2}=0\right) \\
& \Rightarrow y_{2}(x)=\exp (6 x) \quad\left(c_{1}=0, c_{2}=1\right)
\end{aligned}
$$

The que term $f=-s$ or

$$
f(x)=3 e^{5 x}
$$

So the system has the form:

$$
\begin{gathered}
e^{6 x} \frac{d}{d x} c_{2}(x)+e^{-2 x} \frac{d}{d x} c_{1}(x)=0 \\
\frac{d}{d x} c_{1}(x) \frac{d}{d x} e^{-2 x}+\frac{d}{d x} c_{2}(x) \frac{d}{d x} e^{6 x}=3 e^{5 x}
\end{gathered}
$$

or

$$
\begin{aligned}
& e^{6 x} \frac{d}{d x} C_{2}(x)+e^{-2 x} \frac{d}{d x} C_{1}(x)=0 \\
& 6 e^{6 x} \frac{d}{d x} C_{2}(x)+e^{-2 x} \frac{d}{d x} C_{1}(x)=3 e^{5 x}
\end{aligned}
$$

Solve the system

$$
\begin{aligned}
& \frac{d}{d x} c_{1}(x)=-\frac{3 e^{7 x}}{8} \\
& \frac{d}{d x} c_{2}(x)=\frac{3 e^{-x}}{8} \\
& c_{1}(x)=c_{3}+\int\left(-\frac{3 e^{7 x}}{8}\right) d x \\
& c_{2}(x)=c_{4}+\int\left(\frac{3 e^{-x}}{8}\right) d x
\end{aligned}
$$

or

$$
\begin{aligned}
& c_{1}(x)=c_{3}-\frac{3 e^{7 x}}{56} \\
& c_{2}(x)=c_{4}-\frac{3 e^{-x}}{8}
\end{aligned}
$$

Substitute found $C_{1}(x)$ \& $C_{2}(x)$ to

$$
\begin{aligned}
y(x) & =c_{1}(x) e^{-2 x}+c_{2}(x) e^{6 x} \\
\Rightarrow y(x) & =c_{3} e^{-2 x}+c_{4} e^{6 x}-\frac{3 e^{5 x}}{7}
\end{aligned}
$$

Question \# O2
(i) $16 y^{\prime \prime}-40 y^{\prime}+25 y=0$

$$
y(0)=3, y^{\prime}(0)=9 / 4
$$

Solution:-

$$
25 y(x)-40 \frac{d}{d x} y(x)+16 \frac{d^{2}}{d x^{2}} y(x)=0
$$

divide both sides of the equation by the multiplier of the derivative of $y^{\prime \prime}$

$$
\Rightarrow \quad 16
$$

we get the equation

$$
\frac{25 y(x)}{16}-\frac{5 \frac{d}{d x} y(x)}{2}+\frac{d^{2}}{d x^{2}} y(x)=0
$$

This differential equation has the form

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

where, $\quad p=-\frac{5}{2} \quad$ \& $\quad q=\frac{25}{16}$
roots of the characteristic equation

$$
\begin{aligned}
& q+\left(k^{2}+k p\right)=0 \\
& k^{2}-\frac{5 k}{2}+\frac{25}{16}=0
\end{aligned}
$$

root of this equation is

$$
\begin{gathered}
k_{1}=5 / 4 \\
y(x)=c_{1} e^{5 x / 4}+c_{2} x e^{5 x / 4}
\end{gathered}
$$

(ii) $y^{\prime \prime}+14 y^{\prime}+49 y=0 \quad y(-4)=-1, y^{\prime}(-4)=5$
\Rightarrow solutions.

$$
49 y(x)+14 \frac{d}{d x} y(x)+\frac{d^{2}}{d x^{2}} y(x)=0
$$

\Rightarrow The differential equation has the 700 m

$$
\begin{gathered}
y^{\prime \prime}+p y+q y=0 \\
\text { where } \quad p=14 \quad \& \quad q=49
\end{gathered}
$$

root of the characteristic equation

$$
\begin{aligned}
& q+\left(k^{2}+k p\right)=0 \\
& k^{2}+14 k+49=0
\end{aligned}
$$

The root of this equation is:

$$
\begin{gathered}
k_{1}=-7 \\
y(x)=e^{k_{1} x} C_{1}+e^{k_{1} x} C_{2} x
\end{gathered}
$$

Substitute:

$$
\begin{gathered}
k_{1}=-7 \\
y(x)=c_{1} e^{-7 x}+c_{2} x e^{-7 x} \\
c_{1}=-\frac{9}{e^{28}} \\
c_{2}=-\frac{2}{e^{28}} \\
y(x)=\left(-\frac{2 x}{e^{28}}-\frac{9}{e^{28}}\right) e^{-7 x} \\
y(x)=\left(c_{1}+c_{2} x\right) e^{-7 x}
\end{gathered}
$$

$$
\left.\left.\begin{array}{l}
y(-4)=-1 \\
\left(\left\{\begin{array}{ll}
-4 & f_{0} r \\
0 & =1 \\
1 & f_{0} \\
\text { otherwise }
\end{array}\right.\right. \\
0
\end{array}\right)\left.\frac{d}{d x} y(x)\right|_{x=-4}=5\right\} \begin{aligned}
& \frac{d}{d x} y(x)=c_{2} e^{-7 x}-7\left(c_{1}+c_{2} x\right) e^{-7 x} \\
& y(x)=\left(c_{1}+c_{2} x\right) e^{-7 x} \\
& 5=c_{2} e^{-28}-7\left(c_{1}+(-4) c_{2}\right) e^{-28} \\
& -1=\left(c_{1}+(-4) c_{2}\right) e^{--28} \\
& c_{1}=-\frac{9}{e^{28}}
\end{aligned}
$$

(iii) $y^{\prime \prime}-4 y^{\prime}+9 y=0 \quad y(0)=0, y^{\prime}(0)=-8$

Solution -

$$
9 y(x)-4 \frac{d}{d x} y(x)+\frac{d^{2}}{d x^{2}} y(x)=0
$$

This differential equation has the form:

$$
y^{\prime \prime}+p y+q y=0
$$

where

$$
P=-4 \quad \& \quad q=9
$$

roots of the characteristic equation are:

$$
\begin{aligned}
& q+\left(k^{2}+k p\right)=0 \\
& k^{2}-4 k+9=0
\end{aligned}
$$

$$
\begin{gathered}
k_{1}=2-\sqrt{5 i} \\
k_{2}=2+\sqrt{5 i} \\
y(x)=e^{k_{1} x} c_{1}+e^{k_{2} x} c_{2} \\
y(x)=c_{1} e^{x(2-\sqrt{5 i})}+c_{2} e^{x(2+\sqrt{5 i})} \\
y(0)=0 \\
\left.\left(\begin{array}{ll}
\left\{\begin{array}{l}
0 \\
1 \\
1 \\
\text { for } 0=1 \\
\text { for } 1 \\
\text { otherwise }
\end{array}\right)
\end{array}\right) \quad \frac{d}{d x} y(x)\right|_{x=0}=-8 \\
\frac{d}{d x} y(x)=2\left(c_{1} \sin (\sqrt{5 x})+c_{2} \cos (\sqrt{5 x})\right) e^{2 x} \\
y(x)=\left(c_{1} \sin (\sqrt{5 x})+c_{2}(\sqrt{5 x})\right) e^{2 x} \\
-8=2\left(c_{1} \sin (0 \sqrt{5})+c_{2}(0 \sqrt{5})\right) e^{0.2} \\
0=\left(c_{1} \sin (0 \sqrt{5})+c_{2} \cos (0 \sqrt{5})\right) e^{0.2} \\
c_{1}=-\frac{c_{2}=0}{5} \\
y(x)=-\frac{8 \sqrt{5} e^{2 x} \sin (\sqrt{5} x)}{5}
\end{gathered}
$$

Question \# 03

Q:-Define Laplace Transform along with Example b-
\Rightarrow Laplace Transform i-
Laplace transform is the Integral Transform of the given derivative function with real variable t to convert into complex Junction with variable S.

$$
F(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} d t
$$

Question \# 03
(i)

$$
\begin{equation*}
f(t)=6 e^{-5 t}+e^{3 t}+5 t^{3}-9 \tag{11}
\end{equation*}
$$

Solve:-

$$
\begin{aligned}
F(s) & =6 \frac{1}{s-(-s)}+1 \frac{1}{s-3}+8 \frac{3!}{s^{3}+1}-9 \frac{1}{s} \\
& =\frac{6}{s+5}+\frac{1}{s-3}+\frac{30}{s^{4}}-\frac{9}{s}
\end{aligned}
$$

(ii) $g(t)=4 \cos ^{4 t}-9 \sin (4 t)+2 \cos (10 t)$.

Solution e-

$$
\begin{aligned}
g(s) & =4 \frac{s}{s^{2}+4^{2}}-9 \frac{4}{s^{2}+4^{2}}+2 \frac{s}{s^{2}+(10)^{2}} \\
& =\frac{4 s}{s^{2}+16}-\frac{36}{s^{2}+10}+\frac{25}{s^{2}+100}
\end{aligned}
$$

(iii) $h(t)=e^{3 t}+\cos (6 t)^{2}-e^{3 t} \cos (6 t)$

Solution:-

$$
\begin{aligned}
g(s) & =\frac{1}{8-3}+\frac{s}{s^{2}+(6)^{2}}-\frac{8-3}{(s-3)^{2}+(6)^{2}} \\
& =\frac{1}{s-3}+\frac{8}{s^{2}+36}-\frac{8-3}{(s-3)^{2}+36}
\end{aligned}
$$

Question \# 04
(i) $y^{\prime \prime}-10 y^{\prime}+9 y=5 t \quad y(0)=-1 \quad y^{\prime}(0)=2$

Solutions-
Applying the Laplace transform to both sides b

$$
\begin{gathered}
\left(s^{2}-10 s+9\right) y+s-2-10=\frac{5}{s^{2}} \\
y(s)=\frac{s+12 s^{2}-s^{3}}{s^{2}(s-9)(s-1)}
\end{gathered}
$$

To find the inverse laplace Transform we will first simplify the expression for $y(s)$ using the partialtraction decomposition

$$
\frac{s+12 s^{2}-s^{3}}{s^{2}(s-9)(s-1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-9}+\frac{D}{s-1}
$$

we find,

$$
B=\frac{5}{9}, D=-2, C=\frac{31}{81}, A=\frac{50}{81}
$$

Therefore using the linearity of the Inverse Laplace Transform

$$
y(t)=\frac{50}{81}+\frac{5 t}{9}+\frac{81}{81} e^{9 t}-2 e^{t}
$$

$$
y^{\prime \prime}-6 y^{\prime}+15 y=2 \sin (3 t) \quad y(0)=-1 \quad y^{\prime}(0)=-4
$$

we have:

$$
\begin{aligned}
& \left(s^{2}-6 s+159 y+s-2=\frac{6}{s^{2}+9}\right. \\
& \Rightarrow y(s)=\frac{-s^{3}+2 s^{2}-9 s+24}{\left(s^{2}+9\right)\left(s^{2}-6 s+15\right)}=\frac{A s+B}{s^{2}+9}+\frac{C s+D}{s^{2}-6 s+15}
\end{aligned}
$$

To find the constants we need to Simplify the expression on the right \& equate the coefficients at the equal powers

$$
\begin{aligned}
s^{3} & =A+C=-1 \\
s^{2} & =-6 A+B+D=2 \\
s^{1} & =15 A-6 B+9 C=-9 \\
s^{0} & =15 B+9 D=24 \\
A=\frac{1}{10}, & B=\frac{1}{10}, C=\frac{11}{10}, D=\frac{5}{2} \\
y(s)= & \frac{1}{10}\left(\frac{s+1}{s^{2}+9}+\frac{-11 s+25}{s^{2}-6 s+15}\right)
\end{aligned}
$$

Now we need to find the inverse Laplace transform

$$
\begin{gathered}
\mathcal{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\}=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\}=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}+\frac{1}{s}\left\{\frac{3}{s^{2}+9}\right\} \\
=\cos 3 t+\frac{1}{3} \sin s t \\
\Rightarrow \frac{11 s+2 s}{s^{2}-6 s+15}=\frac{-11 s+25}{(s-s)^{2}+6}
\end{gathered}
$$

\#nert

$$
\begin{gathered}
=\frac{-11(s-3)-8}{(s-3)^{2}+6} \\
=-\frac{11}{(s-3)}(8-3)^{2}+6 \\
-\frac{8}{\sqrt{6}} \frac{\sqrt{6}}{(s-3)^{2}+6} \\
\mathcal{L}^{-1}\left\{\frac{-118+25}{s^{2}-6 s+15}\right\}=-11 e^{3 t} \cos \sqrt{6 t}-\frac{8}{\sqrt{6} e} e^{3 t} \sin \sqrt{6 t} \\
y(t)=\mathcal{L}^{-1}\{y\}=\frac{1}{10}\left(\cos 3 t+\frac{1}{3} \sin 3 t-11 e^{3 t} \cos \sqrt{6 t}-\frac{8}{\sqrt{6 t}} e^{3 t}\right. \\
\sin \sqrt{6 t})
\end{gathered}
$$

"End of Paper"

