

[CALCULAS \& ANALYTICAL GEOMETRY]

[Final Exam Paper]

JUNE 27, 2020
SUBMITTED BY SAAD ALI
[ID no: 16880]
[BS-SE]

FINAL EXAM ASSIGMENT
Q. 1
a) Differentiate $\frac{3 x^{4}-2 x^{3}+5}{x^{3}+1}$ with respect to x .
b) Differentiate $\frac{\left(x^{3}+1\right)^{2}}{x^{3}-1}$ with respect to x .
a) Differentiate $\frac{3 x^{4}-2 x^{3}+5}{x^{3}+1}$ with respect to x.
$Q \quad$ no: 1
a)

$$
\frac{3 x^{4}-2 x^{3}+5}{x^{3}+1}
$$

Sol:-
Let $y=\frac{3 x^{4}-2 x^{3}+5}{x^{3}+1}$
Differentiate w.r.t x.

$$
\frac{d y}{d x}=\frac{d}{d x}\left[\frac{3 x^{4}-2 x^{3}+5}{x^{3}+1}\right]
$$

Using Quotient Rule.

$$
\frac{d y}{d x}=\frac{\left(x^{3}+1\right) \frac{d}{d x}\left(3 x^{4}-2 x^{3}+5\right)-\left(3 x^{4}-2 x^{3}+5\right) \frac{d}{d x}\left(x^{3}+1\right)}{\left(x^{3}+1\right)^{2}}
$$

$$
=\frac{\left(x^{3}+1\right)\left(12 x^{3}-6 x^{2}+0\right)-\left(3 x^{4}-2 x^{3}+5\right)\left(3 x^{2}+0\right)}{\left(x^{3}+1\right)^{2}}
$$

$$
=\frac{\left(x^{3}+1\right)\left(12 x^{3}-6 x^{2}\right)-\left(3 x^{4}-2 x^{3}+5\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}}
$$

$$
=\frac{12 x^{6}-6 x^{5}+12 x^{3}-6 x^{2}-9 x^{6}+6 x^{5}-15 x^{2}}{\left(x^{3}+1\right)^{2}}
$$

$$
\left.\int \frac{d y}{d x}=\frac{3 x^{6}+12 x^{3}-21 x^{2}}{\left(x^{3}+1\right)^{2}} \right\rvert\,
$$

b) Differentiate $\frac{\left(x^{3}+1\right)^{2}}{x^{3}-1}$ with respect to x.
b)

Sori-
Let $y=\frac{\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)}$
Differentiate writ x.

$$
\frac{d y}{d x}=-\frac{d}{d x}\left[\frac{\left(x^{3}+1\right)^{2}}{x^{3}-1}\right]
$$

Using Quotient Rule.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(x^{3}-1\right) \frac{d}{d x}\left[\left(x^{3}+1\right)^{2}\right]-\left(x^{3}+1\right)^{2} \frac{d}{d x}\left(x^{3}-1\right)}{\left(x^{3}-1\right)^{2}} \\
&=\frac{\left(x^{3}-1\right) \frac{2\left(x^{3}+1\right)\left(3 x^{2}+0\right)-\left(x^{3}+1\right)^{2}\left(3 x^{2}-0\right)}{\left(x^{3}-1\right)^{2}}}{} \\
&=\frac{\left(x^{3}-1\right) 2\left(x^{3}+1\right)\left(3 x^{2}\right)-\left(x^{3}+1\right)^{2}\left(3 x^{2}\right)}{\left(x^{3}-1\right)^{2}} \\
&=\frac{\left(3 x^{2}\right)\left(x^{3}+1\right)\left[2\left(x^{3}-1\right)-\left(x^{3}+1\right)\right]}{\left(x^{3}-1\right)^{2}} \\
&=\frac{\left(x^{3}-1\right)^{2}}{d y} \\
& \frac{d x}{d x}=\frac{\left(3 x^{2}\right)\left(x^{3}+1\right)\left(x^{3}-2\right)}{\left(x^{3}-1\right)^{2}} \\
& \frac{d y}{d x}=\frac{\left(x^{3}+1\right)\left(3 x^{5}-6 x^{2}\right)}{\left(x^{3}-1\right)^{2}}
\end{aligned}
$$

Q. 2

a) Find the Integration of $\int \frac{1}{\sqrt{x^{5}}} d x$.
b) Find the Integration of $\int \frac{1}{(8 x+7)^{8}} \mathrm{dx}$.
a) Find the Integration of $\int \frac{1}{\sqrt{x^{5}}} d x$.

b) Find the Integration of $\int \frac{1}{(8 x+7)^{8}} \mathrm{~d} \mathbf{x}$.
b) $\int \frac{1}{(8 x+7)^{8}} d x$
(bol.

$$
\begin{gathered}
\int \frac{1}{(8 x+7)^{8}} d x \\
\int(8 x+7)^{-8} d x \\
\frac{1}{8} \int(8 x+7)^{-8}(8) d x \\
\frac{1}{8} \frac{(8 x+7)^{-8+1}}{-8+1}+C \\
\frac{1}{8} \frac{(8 x+7)^{-7}}{(-7)}+C \\
-\frac{(8 x+7)^{-7}}{56}+C
\end{gathered}
$$

Q. 3
a) Find the Integration of $\int \frac{-x+9}{2 x^{2}-8 x+6} \mathrm{dx}$ by Partial fractions.
b) Find the Integration of $\int \frac{4 x^{2}+8 x}{\left(x^{2+1}\right)\left(x^{2}+2 x+3\right)} \mathrm{dx}$ by Partial fractions.
a) Find the Integration of $\int \frac{-x+9}{2 x^{2}-8 x+6} \mathrm{dx}$ by Partial fractions.

Q no: 3
a) Find $\int \frac{-x+9}{2 x^{2}-8 x+6} d x$ by Partial fraction

Sol:-
et $\int \frac{-x+9}{2 x^{2}-8 x+6} d x=$
Consider.
$\frac{-x+9}{2 x^{2}-8 x+6}=\frac{-x+9}{2 x^{2}-6 x-2 x+6}$

$$
=-x+9
$$

$$
2 x\left(x^{2}-3\right)-2(x-3)
$$

$$
=\frac{-x+9}{2 x(x-3)-2(x-3)}
$$

$$
=\frac{-x+9}{(x-3)(2 x-2)}
$$

Let:

$$
\frac{-x+9}{(x-3)(2 x-2)}=\frac{A}{x-3}+\frac{B}{2 x-2}
$$

Multiplying and dividing both side by $(x-3)(2 x-2)$

$$
\begin{equation*}
\Rightarrow \quad-x+9=A(2 x-2)+B(x-3) \tag{1}
\end{equation*}
$$

Setting $x-3=0 \Rightarrow x=3$ in (1)

$$
-3+9=A(2(3)-2)+B(3-3)
$$

$$
6=A(6-2)+0
$$

$$
6=A(4)
$$

$$
17=\frac{6}{4}
$$

$$
A=\frac{3}{2}
$$

b) Find the Integration of $\int \frac{4 x^{2}+8 x}{\left(x^{2+1}\right)\left(x^{2}+2 x+3\right)} d x$ by Partial fractions.

Putting $B=1$ in (c)

$$
D=-3
$$

$$
\frac{4 x^{2}+8 x}{\left(x^{2}+1\right)\left(x^{2}+2 x+3\right)}=\frac{3 x+1}{x^{2}+1}+\frac{(-3 x-3)}{x^{2}+2 x+3}
$$

Taking integration on both side

$$
\begin{aligned}
\int \frac{4 x^{2}+8 x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+3\right)} & =\int \frac{3 x+1}{x^{2}+1} d x-\int \frac{3 x+3}{x^{2}+2 x+3} \\
& =3 \int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
& -3 \int \frac{x+1}{x^{2}+2 x+3} d x \\
& =\frac{3}{2} \int \frac{2 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
& -\frac{3}{2} \int \frac{2 x+2}{x^{2}+2 x+3} d x \\
& =\frac{3}{2} \ln \left|x^{2}+1\right|+\tan ^{-1}(x) \\
& -\frac{3}{2} \ln \left|x^{2}+2 x+3\right|+c
\end{aligned}
$$

Q. 4

Solve each of the following matrix equations:
a) $\mathrm{X}+\left[\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 1 \\ -3 & 1\end{array}\right]$
b) $X+\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 6 \\ 1 & 5\end{array}\right]+\left[\begin{array}{cc}-4 & -8 \\ -2 & 0\end{array}\right]$
c) $X+2 I=\left[\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right]$
a) $X+\left[\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 1 \\ -3 & 1\end{array}\right]$

a) $x+\left[\begin{array}{ll}3 & -1 \\ 2 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 1 \\ -3 & 1\end{array}\right]$

Sol:-

$$
x+\left[\begin{array}{ll}
3 & -1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
5 & 1 \\
-3 & 1
\end{array}\right]
$$

Add $\left[\begin{array}{ll}-3 & 1 \\ -2 & -2\end{array}\right]$ on both sides

$$
\begin{gathered}
x+\left[\begin{array}{cc}
3 & -1 \\
2 & 2
\end{array}\right]+\left[\begin{array}{cc}
-3 & 1 \\
-2 & -2
\end{array}\right]=\left[\begin{array}{cc}
5 & 1 \\
-3 & 1
\end{array}\right]+\left[\begin{array}{cc}
-3 & 1 \\
-2 & -2
\end{array}\right] \\
x+\left[\begin{array}{cc}
3-3 & -1+1 \\
2-2 & 2-2
\end{array}\right]=\left[\begin{array}{cc}
5-3 & 1+1 \\
-3-2 & 1-2
\end{array}\right]
\end{gathered}
$$

$x+\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}2 & 2 \\ -5 & -1\end{array}\right]$

$$
x=\left[\begin{array}{cc}
2 & 2 \\
-5 & -1
\end{array}\right]
$$

b) $X+\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 6 \\ 1 & 5\end{array}\right]+\left[\begin{array}{cc}-4 & -8 \\ -2 & 0\end{array}\right]$

$$
\text { b) } \begin{aligned}
& \text { Sol: } {\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 6 \\
1 & 5
\end{array}\right]+\left[\begin{array}{cc}
-4 & -8 \\
-2 & 0
\end{array}\right] } \\
& x+\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
2-4 & 6-8 \\
1-2 & 5+0
\end{array}\right]
\end{aligned}
$$

Add $\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$ on both sides

$$
x+\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-1 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]
$$

$$
x+\left[\begin{array}{cc}
-1+0 & 0+0 \\
0+0 & 2+(-2)
\end{array}\right]=\left[\begin{array}{cc}
-2+1 & -2+0 \\
-1+0 & 5-2
\end{array}\right]
$$

$$
x+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
-1 & 3
\end{array}\right]
$$

$$
x=\left[\begin{array}{cc}
-1 & -2 \\
-1 & 3
\end{array}\right]
$$

c) $\quad \mathrm{X}+2 \mathrm{I}=\left[\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right]$

c) $x+2 I=\left[\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right]$ Sol:

$$
\begin{aligned}
& x+2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 2
\end{array}\right] \\
& x+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Add $\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$ on both sides

$$
x+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]+\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 2
\end{array}\right]+\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

$$
x+\left[\begin{array}{cc}
2-2 & 0+0 \\
0+0 & 2-2
\end{array}\right]=\left[\begin{array}{cc}
3-2 & -1+0 \\
1+0 & 2-2
\end{array}\right]
$$

$$
x+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & 0
\end{array}\right]
$$

$$
x=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

Q. 5
a) If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}-3 & 2 \\ 4 & 0\end{array}\right]$, $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ Find $A^{2}+B C$

Q no: 5

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right], B=\left[\begin{array}{rr}
-3 & 2 \\
4 & 0
\end{array}\right]
$$

$$
C=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Find $A^{2}+B C$

Sol:-

$$
\begin{aligned}
A^{2}=A \cdot A & =\left[\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 4 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mid \times 1+4 \times 2 & 1 \times 4+4 \times 1 \\
2 \times 1+1 \times 2 & 2 \times 4+\mid \times 1
\end{array}\right] \\
A^{2} & =\left[\begin{array}{cc}
7 & 8 \\
4 & 9
\end{array}\right]
\end{aligned}
$$

Now

$$
B C=\left[\begin{array}{cc}
-3 & 2 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-3 \times 1+2 \times 0 & -3 \times 0+2 \times 2 \\
4 \times 1+0 \times 0 & 4 \times 0+0 \times 2
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-3 & +4 \\
4 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A^{2}+B C=\left[\begin{array}{ll}
7 & 8 \\
4 & 9
\end{array}\right]+\left[\begin{array}{cc}
-3 & 4 \\
4 & 0
\end{array}\right] \\
& A^{2}+B C=\left[\begin{array}{cc}
4 & 12 \\
8 & 9
\end{array}\right]
\end{aligned}
$$

