Data Structures

Data Structures and Algorithms

Spring-2020 Final-Semester

Faculty: Muhammad Adil (Asst: Prof.)

Student Name: Muhammad Hamza Awan

Q\#1. (a) Sort the given list using Insertion Sort:

- 56, 59, 45, 40, 43, 55
- Algorithm of Insertion Sort is:
- Step 1 - If it is the first element, it is already sorted. return 1;
- Step 2 - Pick next element
- Step 3 - Compare with all elements in the sorted sub-list
- Step 4 - Shift all the elements in the sorted sub-list that is greater than the value to be sorted
- Step 5 - Insert the value
- Step 6-Repeat until list is sorted
56 59 45 40 435

Insertion sort compares the first two elements.
$5 6 \longdiv { 5 9 } \boxed { 4 5 } \boxed { 4 0 } \boxed { 4 3 } \sqrt { 5 5 }$

It finds that both 56 and 59 are already in ascending order. For now, 56 is in sorted sub-list. And Insertion sort moves ahead and compares 59 with 45 . And finds that 45 is not in the correct position. It swaps 45 with 59 . It also checks with all the elements of sorted sub-list. Here we see that the sorted sub-list has only one element, and 56 is greater than 45 . So it swaps 45 with 56 .

455654543

Now it compares 59 with 40.40 is not in its place so we swap 40 with 59 . Here we see that the sorted sub-list has only two elements now, and 45 and 56 is greater than 40 . So it swaps 40 with 45 and 56 .

Now it compares 59 with 43.43 is not in its place so we swap 43 with 59 . Here we see that the sorted sub-list has three elements now, and 40 is less than 43 while 45 and 56 are greater than 43 . So it swaps 43 with 45 and 56 .

$$
4043545565
$$

Now it compares 59 with 55.55 is not in its place so we swap 55 with 59 . Here we see that the sorted sub-list has four elements now, and 40,43 and 45 is less than 55 and 56 is greater than 55 . So it swaps 55 with 56.

This process goes on until all the unsorted values are covered in a sorted sub-list.and the list will be sorted as above figure.

Q\#2. Construct Binary Trees from given list of numbers and then verify the tree.

Verification:

- Inorder traversal:
o $42,40,38,36,35,33,25,25,20,17,15,15,13$

Q\#3. Construct Binary Trees from given Mathematical Expressions
i. $\quad \mathrm{H}+\mathrm{G}$ * $\mathbf{2 - (\mathrm { F } ^ { \wedge } \mathrm { M })}$

ii. $\quad A * D+T^{\wedge} B-R$

Q\#4. Apply all the three Binary Tree Traversal Techniques on each of the Tree Constructed in Q\#3.
i. $\quad \mathbf{H + G} * 2-\left(F^{\wedge} M\right)$

- In order Traversal:

$$
H,+, G, *, 2,-, F, \wedge, M
$$

- Pre order traversal:

$$
-,+, H, *, G, 2, \wedge, F, M
$$

- Post order traversal:

H, G, 2, *, +, F, M, ^, -
ii. $\quad A^{*} D+T^{\wedge} B-R$

- In order Traversal:
A,* , D ,+ , T, ^ , B ,- , R
- Pre order traversal:

$$
-,+, *, A, D, \wedge, T, B, R
$$

- Post order traversal:

A, D, *, T, B, ^, + , R, -

Q\#3. Fill in the blanks.
i. Elements of a Tree are called Nodes.
ii. The graphical line drawn between Nodes of a Tree is called edge.
iii. Level Number of a Root is Zero (0).
iv. All the nodes with same Level Number belong to same generation.
v. The Left-Most Child Node is Oldest Brother Node.
vi. The Right-Most Child Node is Youngest Brother Node.
vii. A Tree is a non-linear Data Structure.
viii. An Ordered Set of Ordered Trees is called a Forest.

