NAME
ID
ADNAN
13507

Q1.
Solution.

$$
\begin{aligned}
\text { where } s=\{ & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8) \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(3,7),(3,8), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(4,7),(4,8), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(5,7),(5,8), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),(6,7),(6,8) \\
& (7,1),(7,2),(7,3),(7,4),(7,5),(7,6),(7,7),(7,8) \\
& (8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7),(8,8)\} .
\end{aligned}
$$

Let $A=\{$ the sum is 7$\}, B=\{$ the sum is even $\}, c=\{$ the sum is greater than 8$\}$ and $D=\{$ the two dice had the same outcomes $\}$. Then
$A=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(4,3)\}$,
$B=$
$\{(1,1),(1,3),(1,5),(2,2),(1,7),(2,2),(2,4),(2,6),(2,8),(3,1),(3,3),(3,5),(3,7),(4$, $2),(4,4),(4,6),(4,8),(5,1),(5,3),(5,5),(5,7),(6,2),(6,4),(6,6),(6,8),(7,1),(7,3),($ $7,5),(7,7),(8,2),(8,4),(8,6),(8,8)\}$.

C =
$\{(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,4)),(5,5),(5,6),(5$,
7),(5,8),(6,3),(6,4),(6,5),(6,6),(6,7),)(6,8),(7,2)(7,3),(7,4),)(7,5),(7,6),(7,7)
,(7,8),(8,1),(8,2),(8,3),(8,5),(8,6),(8,7),(8,8)\}
$D-=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8)\}$.
$A \cap B=\{ \}$
$A \cap C=\{ \}$
$A \cap D=\{ \}$
$P(A)=6 / 64, p(B)=32 / 64$
$P(C)=36 / 64, ~ P(D)=8 / 64$
$P(A \cap B)=0, P(A \cap C)=0, P(A \cap D)=0$
Hence
$P(A / B)=P A \cap B / P(B)=0 * 32 / 64$
$P(A / B)=0$.
$P(A / C)=P A \cap C / P(C)=0 * 36 / 64$
$P(A / C)=0$.

$$
\begin{aligned}
& P(A / D)=P A \cap D / P(D)=0 * 8 / 64 \\
& P(A / D)=0 \\
& \text { ANS. }
\end{aligned}
$$

Q2.

SOLUTION.

Now we find

P (sum greater than 7)
P (sum less than 7)

P(sum Exactly equal to 7)

1	1	2	3	4	5	6
2	2	3	4	5	6	7
3	3	4	5	6	7	8
4	4	5	6	7	8	9
5	5	6	7	8	9	10
6	6	7	8	9	10	11
7	7	8	9	10	11	12

Total sum $=6 / 36=1 / 6$
Favrurable outcomes/possible outcomes
$P($ sum greater than 7$)=15 / 36$
$P($ sum less than 7$)=10 / 36=5 / 18$
$P($ sum Exactly equal to 7$)=6 / 36=1 / 6$ ANS.

Q3.

Solution.

Given that $p=2 / 3 n=8$

- $q=1-p$
- put values in q
- = 1-2/3
- $\mathrm{Q}=1 / 3$

Now find x denotes the number of games won by A then
(1) $\quad P(x=4)$
(8) $(2 / 3)^{4(1 / 3) 4}$

4
= 1120/8561
$=0.1707$
(2) $(p x>-4)$

- $1-(x<4)$

$$
\begin{aligned}
& \bullet=1-\Sigma 3(8 / x)(2 / 3) x(1 / 3) 8-x \\
& \quad X=0 \\
& =1-[(1 / 3) 8+8(2 / 3)(1 / 3) 7+28(2 / 3) 2 \\
& (1 / 3) 6+56(2 / 3) 3(1 / 3) 5] \\
& =1-1 / 6561[1+16+112448] \\
& =1-577 / 6561 \\
& =6561-577 / 6561 \\
& =5984 / 6561 \\
& 0.9121
\end{aligned}
$$

(3)

$$
\begin{aligned}
& P(3<-x<-6) \\
& \sum \\
& X=3(8)(2 / 3) \times(1 / 3) 8-x
\end{aligned}
$$

$$
=(8 / 3)(2 / 3) 3(1 / 3) 5(8 / 4)(2 / 3) 4(1 / 3) 4+(8 / 5)(2 / 3) 5(1 / 3) 3+(8 / 6)(2 / 3) 6(1 / 3)
$$

$$
2
$$

$$
=8 / 3^{8[56+140+224+224]}
$$

$$
=8^{*} 664 / 6561=5152 / 6561=0.7852 \text { ANS. }
$$

Q5.

ANS.

Derive Binomial distribution:

A binomial distribution can be thought of as simply the probability of a SUCCESS or FAILURE outcome in an experiment or survey that is repeated multiple times. The binomial is a type of distribution that has two possible outcomes.

Now we find mean and variance of binomial distribution.
Mean
$\mathrm{n}=5$
$p=60$
$q=40$
we know that mean formula
$\boldsymbol{\mu}_{\mathrm{x}=\mathrm{np}}$
put values in Mean formula
$=5(60)$
$\mu_{\mathrm{x}}=300$
now find variance of the above mean value
$\boldsymbol{\mu}_{\mathrm{x}=\mathrm{np}}$
put values
$=5(60)$
$=300$
variance formula
$\mu_{\mathrm{x}}{ }^{2}=\mathrm{npq}$
put values
$=5(60)(40)$
$\mu_{x}{ }^{2}=12000$
now taking variance square
$\boldsymbol{\mu}_{\mathrm{x}}=V_{\mathrm{npq}}$
$=V_{12000}$
$\mu_{\mathrm{x}}{ }^{2}=109.5445$
ANS.

Q6.

ANS.

Differentiate between Bi-nominal frequency distribution and Bi-nominal distribution:

Bi-nominal frequency distribution

- If the binominal probability distribution is multiplied by N the numbers of experiments or sets.
- The resulting distribution is known as binominal frequency distribution.
- $\quad X$ is numbers of success and N is a numbers of experiments.
- Formula
- $N(n) p^{x} q^{n-x}$

Bi-nominal distribution:

- Binomial distribution summarizes the number of trials, or observations when each trial has the same probability of attaining one particular value. ...
- When $\mathrm{p}=0.5$, the distribution is symmetric around the mean. When $\mathrm{p}>0.5$, the distribution is skewed to the left. When $p<0.5$, the distribution is skewed to the right.

Formula

$$
\begin{aligned}
& \boldsymbol{\mu}_{\mathrm{x}}=\mathrm{np} \\
& \boldsymbol{\mu}_{\mathrm{x}}{ }^{2}=\mathrm{npq}
\end{aligned}
$$

Q7.

PROBLEM SOLUTION.

In this problem, you were asked to:

- Find the CV for each data set

In order to do this, we only need to plug the sample standard deviation and mean of each data set into the formula given above.

Measure	Data Set A	B	C	D
Coefficient of	$\mathrm{CV}=3 / 45^{*} 100$	CV	$\mathrm{CV}=$	$\mathrm{CV}=$
Variation	$\mathrm{CV}=6.7$	$11 / 60 * 100$ $\mathrm{CV}=18.3$	$5 / 30^{*} 100$ $\mathrm{CV}=10$	$15 / 25^{*} 100$ $\mathrm{CV}=60$

In this case, the data set with the lowest CV is data set A , followed by C, D and D . Meaning, set A has the lowest variation amongst these data sets.

ANS.
-------- THE END------

