
IQRA National University Peshawar

Sessional Assignment

Subject: ADVANCED ALGORITHM ANALYSIS

Submitted to: Dr. Atif Ishtiaq (HOD CS)

Submitted by: Noor rahman

Reg Id 14232

MSCS 2017-18

Department of Computer Science

Q. 1) Explain Greedy Algorithms with the help of example.

Answer:

A greedy algorithm proceeds in the same way as scrooge did. That is, it grabs data

items in sequence, each time taking the one that is deemed “best” according to some

criterion, without regard for the choices it has made before or will make in the future.

One should not get the impression that there is something wrong with greedy algorithms

because of the negative connotations of scrooge and the word “greedy.” They often lead to very

efficient and simple solutions. Like dynamic programming, greedy algorithms are often used to

solve.optimization problems. However, the greedy approach is more straightforward. In dynamic

programming, a recursive property is used to divide an instance into smaller instances. In

the greedy approach, there is no division into smaller instances. A greedy algorithm

arrives at a solution by making a sequence of choices, each of which simply looks the

best at the moment. That is, each choice is locally optimal. The hope is that a globally

optimal solution will be obtained, but this is not always the case. For a given algorithm,

t determine whether the solution is always optimal

Example

A simple example illustrates the greedy approach. Joe, the sales clerk, often

encounters the problem of giving change for a purchase. Customers usually don’t want to

eceive a lot of coins. For example, most customers would be aggravated if he gave them

87 pennies when the change was $0.87. Therefore, his goal is not only to give the correct

change, but to do so with as few coins as possible. A solution to an instance of Joe’s

change problem is a set of coins that adds up to the amount he owes the customer, and

an optimal solution is such a set of minimum size. A greedy approach to the problem

could proceed as follows. Initially there are no coins in the change. Joe starts by looking

or the largest coin (in value) he can find. That is, his criterion for deciding which coin is

best (locally optimal) is the value of the coin. This is called the selection procedure in a greedy

algorithm.

Q.2) Explain Huffman Coding with example.

Answer:

Even though the capacity of secondary storage devices keeps getting larger and their cost
keeps getting smaller, the devices continue to fill up due to increased storage demands.
Given a data file, it would therefore be desirable to find a way to store the file as
efficiently as possible. The problem of data compression is to find an efficient method
or encoding a data file. Next, we discuss the encoding method, called Huffman code,
and a greedy algorithm for finding a Huffman encoding for a given file.

A common way to represent a file is to use a binary code. In such a code, each

character is represented by a unique binary string, called the code word. A fixed-length

binary code represents each character using the same number of bits. For example,

suppose our character set is {a, b, c}. Then we could use 2 bits to code each character,

since this gives us four possible code words and we need only three. We could code as

follow.

a:00 b:01 c:11

Given this code, if our file is

ababbbbc,

Our encoding is

0001000111010111

Figure Binary tree corresponding to Code.

 0 1

 0 1

b

a c

Figure . The binary character code for Code C2 in Example 4.7 appears in (a),

while the one for Code C3 (Huappears in (b).

Q.3) Explain Dijkstra’s Algorithm.

This algorithm is similar to Prim’s algorithm for the Minimum Spanning Tree problem.

We initialize a set Y to contain only the vertex whose shortest paths are to be

determined. For focus, we say that the vertex is v1. We initialize a set F of edges to being

empty. First we choose a vertex v that is nearest to v1, add it to Y , and add the edge <

v1, v > to F. (By < v1, v > we mean the directed edge from v1 to v.) That edge is clearly a

shortest path from v1 to v. Next we check the paths from v1 to the vertices in V - Y that

allow only vertices in Y as intermediate vertices. A shortest of these paths is a shortest

path (this needs to be proven). The vertex at the end of such a path is added to Y , and

the edge (on the path) that touches that vertex is added to F. This procedure is continued

until Y equals V , the set of all vertices. At this point, F contains the edges in shortest

paths. The following is a high-level algorithm for this approach.

Example:

Dijkstra’s Algorithm

Problem: Determine the shortest paths from v1 to all other vertices in a weighted

directed graph.

Inputs: integer n ≥ 2, and a connected, weighted, directed graph containing n vertices

The graph is represented by a two-dimensional array W, which has both its rows and

columns indexed from 1 to n, where W [i] [j] is the weight on the edge from the ith

vertex to the jth vertex.

Figure . A weighted, directed graph (in upper-left corner) and the steps in Dijkstra’s algorithm

for that graph. The

vertices in Y and the edges in F are shaded in color at each step.

Because we are assuming that there is a path from v1 to every other vertex, the

variable vnear has a new value in each iteration of the repeat loop. If this were not the

case, the algorithm, as written, would end up adding the last edge over and over until n

- 1 iterations of the repeat loop were completed.

Algorithm 4.3 determines only the edges in the shortest paths. It does not produce the

lengths of those paths. These lengths could be obtained from the edges. Alternatively, a

simple modification of the algorithm would enable it to compute the lengths and store

them in an array as well

……………………………………………………………………………………….

