Iqra National University, Peshawar Department of Electrical Engineering

FINAL - ASSIGNMENT SPRING2020
Date:26/6/2020

Course Code: Prerequisite: Module:	MTH 102				Course Title: Instructor:		Calculus and analytic geometry	
	Abdullah						HIMAYATULLAH	
	3	Program:	BEE	Total Marks:		50		16194

Note: Attempt all questions.PLO: program learning outcome C:Cognitive

Q1.	a	. Estimate $\int \theta \sqrt[4]{1-\theta^{2}} d \theta$	Marks 7
			$\begin{aligned} & \hline \text { PLO2 } \\ & \text { C2 } \end{aligned}$
	b	Estimate $\int_{0}^{1} x^{3}\left(1+x^{4}\right)^{3} d x$ using substitution method.	$\begin{aligned} & \hline \text { Marks } 7 \\ & \text { PLO2 } \\ & \text { C2 } \end{aligned}$
Q2	(a)	Illustrate the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+3 x-4 z+1$.	Marks 5 PLO1 C3
	(b)	The region between the curve $y=\sqrt{x}, 0 \leq x \leq 4$, and the x -axis is revolved about the x -axis to generate a solid. Apply the integration find the volume of solid.	$\begin{aligned} & \hline \text { Marks } 4 \\ & \hline \text { PLO1 } \\ & \text { C3 } \end{aligned}$
Q3		If $A=2 i-4 j+\sqrt{5} k$, and $B=-2 i+4 j-\sqrt{5} k$ then illustrate the vector proje $_{A} B$	$\begin{aligned} & \hline \text { Marks } 9 \\ & \hline \text { PLO1 } \\ & \text { C3 } \end{aligned}$
Q4		Find the area of the region between the graph and the x -axis Where $y=-x^{2}+5 x-4, \quad[0,2]$.	$\begin{aligned} & \text { Marks } 9 \\ & \hline \text { PLO1 } \\ & \text { C3 } \\ & \hline \end{aligned}$
Q5	(a)	Estimate the angle between $A=i-2 j-2 k$ and $B=6 i+3 j+2 k$	$\begin{aligned} & \text { Marks } 5 \\ & \hline \text { PLO1 } \\ & \text { C3 } \end{aligned}$
	(b)	Change into a spherical coordinate equation for the sphere $x^{2}+y^{2}+$ $(z-1)^{2}=1$	Marks 4 PLO1 C3

			PLO2
			C2

Qno 1 (Part a)
Ansh Given:

$$
\int \theta \sqrt[4]{1-\theta^{2}} d \theta
$$

Solutionin

$$
\begin{aligned}
& \text { let } \\
& 1-\theta^{2}=u \\
& \frac{d}{d \theta}\left(1-\theta^{2}=\frac{d}{d \theta} u\right. \\
& -2 \theta=\frac{d u}{d \theta} \\
& \theta d \theta=-\frac{1}{2} d u
\end{aligned}
$$

Now

$$
\begin{aligned}
& =\int(u)^{\frac{1}{4}} \cdot\left(-\frac{1}{2}\right) d u \\
& =-\frac{1}{2} \int u^{\frac{1}{4}} d u \quad \therefore \frac{1}{4}+1 \\
& =-\frac{1}{2} \cdot \frac{x_{3}}{5} u^{5 / 4}+c
\end{aligned}
$$

$$
=-\frac{2}{5} u^{5 / 4}+C
$$

By back fubstitution

$$
=-\frac{2}{5}\left(1-\theta^{2}\right)^{5 / 4}+C
$$

Result:

$$
=-\frac{2}{5}\left(1-\theta^{2}\right)^{5 / 4}+C
$$

Qno 1 (Parkb)
Given :

$$
\int_{0}^{1} x^{3}\left(1+x^{4}\right)^{3} d x
$$

Gulution,

$$
\begin{aligned}
1+x^{4} & =u \\
\frac{d}{d x}\left(1+x^{4}\right) & =\frac{d}{d x} u \\
\quad 4 x^{3} & =\frac{d u}{d x}
\end{aligned}
$$

$$
x^{3} d u=\frac{1}{u} d u
$$

$$
\left\{\begin{array}{c}
\text { Now put } u= \\
1+0^{4}=1 \\
u=1
\end{array}\right.
$$

If put $x=1$ in eq (1)

$$
\begin{array}{r}
1+(1)^{4}=2 \\
u=2 \\
=\int_{1}^{2}(u)^{3} \frac{1}{4} d u \\
=\frac{1}{4} \int_{1}^{2} u^{3} d u \\
=\left.\frac{1}{4} \frac{u^{4}}{4}\right|_{1} ^{2} \\
=\frac{1}{4}\left(\frac{(2)^{4}}{4}-\frac{(1)^{4}}{4}\right) \\
=3 / 8
\end{array}
$$

Result.

$$
=3 / 8 \text { ANS }
$$

Quo 2 (Part A)
ANS in
Given:?

$$
x^{2}+y^{2}+z^{2}+3 x-4 z+1=0
$$

Required:-
Center of Sphere =?
Radius of Sphere=?
Solution:

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}+3 x-4 z+1=0 \\
\left(x^{2}+3 x\right)+y^{2}+\left(z^{2}-4 z\right)=-1
\end{gathered}
$$

Adding $\left(\frac{3}{2}\right)^{2}+\left(\frac{-4}{2}\right)^{2}$ to both side

$$
\begin{aligned}
& \left(x^{2}+3 x+\left(\frac{3}{2}\right)^{2}\right)+(y)^{2}+\left(z^{2}-4 z+\left(-\frac{-4}{2}\right)^{2}\right)+-1+\left(\frac{3}{2}\right)^{2}+\left(-\frac{4}{2}\right)^{2} \\
& \left(x+\frac{3}{2}\right)^{2}+(y)^{2}+(z-2)^{2}=\frac{-4+9+16}{4} \\
& \left(x+\frac{3}{2}\right)^{2}+(y)^{2}+(z-2)^{2}=\frac{21}{4}
\end{aligned}
$$

So $\left(x_{0}, y_{0}, z_{0}\right)=$ Centre

$$
C_{\text {entire }}=\left(-\frac{3}{1}, 0,2\right)
$$

Now finding radius
Radius $A=\sqrt{\frac{21}{4}}$

Resulting

$$
\begin{aligned}
& \text { Centre }=\left(-\frac{3}{2}, 0,1\right) \\
& \text { Radius }=\sqrt{\frac{21}{4}}
\end{aligned}
$$

Quod (part)
ANS: Given:-

$$
\begin{aligned}
y & =\sqrt{x} \\
0 \leqslant x & \leqslant 4 \Rightarrow a \leqslant x \leqslant b
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& V=\int_{a}^{b} \pi y^{2} d x \\
& v=\int_{0}^{4} \pi(\sqrt{x})^{x} d x \\
& v=\pi \int_{0}^{4} x d x \\
& v=\left.\pi \frac{x^{2}}{2}\right|_{0} ^{4} \\
& v=\frac{\pi}{2}\left(4^{2}-0\right) \Rightarrow \frac{\pi}{x} \times 8
\end{aligned}
$$

Result in

$$
V=8 \pi \text { Ans }
$$

QNO 3
ANS: Given in

$$
\begin{aligned}
& A=2 i-4 j+\sqrt{5} k \\
& B=-2 i+4 j-\sqrt{5} k
\end{aligned}
$$

Requiredn
project. $B=?$
Selution:

$$
\begin{aligned}
& \text { Prject }-B=f\left(\frac{B \cdot A}{A \cdot A}\right) A \\
&(B \cdot A)=(-2 i+4 j-\sqrt{5} K)(2 i-4 j+\sqrt{5} k) \\
&=-4-16-(15)^{8} \\
&=-4-16-5 \\
&=-25 \\
&(A \cdot A)=(2 i-4 j+\sqrt{5})(2 i-4 j+\sqrt{5}) \\
&= 4+16+(55)^{2} \\
&=15
\end{aligned}
$$

Project $B=\left(\frac{-25}{25}\right)(2 i-4 j+\sqrt[5]{ } k)$

$$
\text { projecta } B=-2 i+4 y-\sqrt{5} k \text { ANS. }
$$

Qno 4 ANSn

Givenn

$$
y=-x^{2}+5 x-4[0,2]
$$

Required:-
Area = ?

Colution:-

$$
\begin{aligned}
& A S \quad \begin{array}{r}
a=0 \\
b=2
\end{array} \\
& A=\int_{0}^{5} f(x) d x \\
& A=\int_{0}^{2}\left(-x^{2}+5 x-4\right) d x \\
& A=\left.\left(-\frac{x^{3}}{3}+\frac{5}{2} x^{2}-4 x\right)\right|_{0} ^{2} \\
& A=-\frac{1}{3}(2)^{3}+\frac{5}{2}(2)^{2}-4(2)-(0) \\
& A=\left(-\frac{1}{3}(x)+\frac{5}{3}(x)-8\right)
\end{aligned}
$$

$$
\begin{aligned}
& A=-\frac{8}{3}+\frac{20}{x}-8 \\
& A=-\frac{2}{3}=-0.6
\end{aligned}
$$

As area is Never in Negative So we take the value positive.

Result in

$$
A=0.6
$$

QNO 5 (Part A)
ANSn Givenn

$$
\begin{aligned}
& A=i-2 j-2 k \\
& B=6 i+3 j+2 k
\end{aligned}
$$

Requiredin
Angle Cosine $=\cos \theta=$?
falin

$$
\begin{aligned}
& A=i-2 j-2 k \\
& B=6 i+3 j+2 k \\
& \cos \theta=\left(\frac{A \cdot B}{|A| \cdot|B|}\right) \\
& A \cdot B=(i-2 j-2 k)(6 i+3 j+2 k) \\
& =6-6-4 \\
& A \cdot B=-4
\end{aligned}
$$

Now

$$
\begin{aligned}
|A| & =\sqrt{1+4+4} \\
& =\sqrt{9} \\
|A| & =3
\end{aligned}
$$

$$
\begin{aligned}
|B| & =\sqrt{(6)^{2}+(3)^{2}+(9)^{2}} \\
& =\sqrt{36+9+4} \\
& =49 \\
|B| & =7
\end{aligned}
$$

putting value

$$
\begin{aligned}
& \operatorname{Cos} \theta=\frac{-4}{3 \times 7} \\
& \theta=\operatorname{Cos}^{-1} \frac{-4}{21}
\end{aligned}
$$

Result:-

$$
\begin{aligned}
& \theta=\operatorname{Cos}^{-1} \frac{-4}{21} \\
& \theta=100.98^{\circ}
\end{aligned}
$$

QNO 5 Part (b) Ans:n

Given in

$$
x^{2}+y^{2}+(z-1)^{2}=1
$$

Required:n
Sperical Coordination equation =?
Colutionn

$$
\begin{aligned}
& \text { dolutionn } x^{2}+y^{2}+(z-1)^{2}=1 \\
& \begin{array}{l}
(f \sin \phi \cos \theta)^{2}+(f \sin \phi \sin \theta)^{2} \\
\quad+\left(f \cos ^{2} \phi-1\right)^{2}=1
\end{array} \\
& f^{2} \sin ^{2} \phi \cos ^{2} \theta+f^{2} \sin ^{2} \phi \sin ^{2} \theta+f^{2} \cos ^{2} \phi+1-2 f(\cos \phi=1 \\
& f^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+f^{2} \cos ^{2} \theta+1 \\
& -1 f \cos ^{2} \phi=1
\end{aligned}
$$

$$
\begin{aligned}
& f^{2}(2)-2 f \cos \phi=0 \\
& f^{2}-2 f \cos \phi=0 \\
& \frac{f^{x}}{f}=\frac{\partial f \cos \phi}{f} \\
& f=\partial \cos \phi
\end{aligned}
$$

Resultin

$$
f=2 \operatorname{Cos} \phi
$$

