Programs: BC (CS), BS(SE), BS(TELC)

Subject: Digital Logic Design

Major Assignment Final-Term

Course Code: CSC-201
EDP Code: 102007016
Summer Semester 2020

Name= MUHAMMAD ILYAS ID 12543

Q.1 Draw and explain the logic diagram for each of the following:
a) A circuit for adding or subtracting two 4-bit numbers
b) 4-bit active low decoder
c) Decimal to BCD encoder
d) Frequency divider (Use 3 J-K flip-flops and assume 16 kHz frequency of the initial wave-form.)
Q. 2 For the 4-input multiplexer, data inputs are given as:
$D_{0}=0, D_{1}=1, D_{2}=0, D_{3}=1$
Find the output Y if the select inputs are given as:
Q. 3 Timing diagram in Figure 01 shows inputs to a 9-bit parity checker. Draw the \sum Even and Σ Odd output for the even parity checking.
Q. 4 The waveforms in Figure 02 are applied to the $J, K, C L K,-P R E$ 产, and $C L R$ inputs as indicated. Determine the Q output, if the flip-flop is initially RESET.
Q. 5 Use the waveforms in Figure 03 to draw the timing diagram for the parallel outputs $\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)$ for the shift register. Assume that register is initially cleared.
Q. 6 Draw the logic diagram and timing diagram for the $4-s t a g e ~ s y n c h r o n o u s$ binary counter. Verify that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

Name

Subject

Submitted to

Date

ID
M. ILyAS

D LD

Sir. Amin

22-Sep. 2020

12543

Dace no (8)

Because this 4-bit synchranus count er Counts sequentially on every clock pulse the resulting outputs count upwards from - (0000) to $15(1111)$. theofore this type of counter is also known as a 4-bit synchronous : up counter.

Q 6 (Ans)

it can be seen above, that the external clock pulses are fed thirectly to each of the J-k filpflops in the counter chain and that both the Jand k inputs.
the J and k inputs of flip. Flop FFB are connected to the output $Q A$ of FFA but the J and k inputs of FFC anal FFP are driven from Seperat AND gates which also supplies with signals from the input and output of the previous. Stapes

Dye (No 6)
Q5 use the waveforms in Fig-3 to draw the timing diag for th parallel outputs $\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)$ for the shift velistor. Assume that register is initially cleared.

Data in \square 0 1 \square Lo

a.

$$
Q_{2}
$$

Q_{3} \qquad
1

Q_{4}
The first dato bit entered into the reiste on the First clock Pulse and then shifted from leyte to right as the remaining bits extend and shifted. The register contains $Q_{4}, Q_{3}, Q_{2}, Q_{1}, Q_{2}=11010$ after five clodepkes

Pope No (5)
Q4पthe waveforms ind $7 i 92$ are applied to the $j, k, C L K, \overline{P R E}$ and $\overline{C R}$ input as indicated. Determine the Q output, if the Flip-flop is initially Reset.

Pip (9)
The resulting ib waveform shown in Fif(2) Notice that each time a Low is applied
es to the $\overline{P R E}$ or $1 \overline{C R R}$, the flip-7lop is set or reset regardless of th states of the other inputs.

Q3C Tinmiy diag in Fij, shows inpuls to a 9-bi pavity cheakes. Draw the Even and odd outpud for the even pavity cheelking.

Even

As

A,

A_{4}

Pope No (3)
Q2: For the 4-imput mubbipleyer, data inputs ave

$$
D_{0}=0, D_{1}=1, \quad D_{2}=0, D_{3}=1
$$

Find output y if.

$$
\begin{array}{ll}
S_{0}=1 & S_{1}=0 \\
S_{0}=0 & S_{1}=1 \\
S_{0}=1 & S_{1}=1 \\
S_{0}=0 & S_{1}=0
\end{array}
$$

A 4×1 Mus has 4 input lines $\left(D_{0}, D_{1}, D_{2}, D_{3}\right)$ two select input (S_{0} and s,) and one out put line x.
if $S_{1} S_{0}=00$ then

$$
y=D_{0}
$$

if $S, S_{0}=01$ then
$y=D$,
if $S_{1} S_{0}=10$ then
$y=D_{2}$
if $S_{1} S_{0}=11$ then

$$
y=D_{3}
$$

Data input		
S_{1}	S_{0}	Y
0	0	D_{0}
0	1	D_{1}
1	0	D_{2}
1	1	D_{3}

Pope No 2
Truth table.

A	B	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Q1 (part.)
Sol
encoder has ten inputs - one for each decimal diyitil and foul out puts the outputs indicate the BCD locke that represent the active input.

Nape No 1
((1)) Draw and explain the logic diagram
(a) A circut for adding or subtracting two 4-bit numbers.
125. Ans In Digital Cireut. A binary Adder. Subtractor is one which is capable of both addition and subtraction of binary numbers is one Circut itself. it is one of the components of (ALU)

Q(1) (b)
4 bit active low decoder.

Data Lines.

