Department of Electrical Engineering
 Final Exam Assignment
 Date: 27/06/2020

Course Details

Course Title: Digital Signal Processing
Module: 6th Instructor: Pir Mehar Ali Shah

Total Marks: 50

Student Details

Name: Junaid Ur Rehman
Student ID: 11484

Q1.	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$ To the input $(n)=(-1)^{n} u(n)$. And the initial conditions are $\mathrm{y}(-1)=\mathrm{y}(-2)=0$.	Marks 7 CLO 2
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation. $y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)$	Marks 7 CLO 2
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform $x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}$ (Hint: Take inverse z -transform using partial fraction method)	Marks 6 CLO 2
	(b)	Evaluate the inverse z- transform using the complex inversion integral $X(z)=\frac{1}{1-a z^{-1}} \quad\|z\|>\|a\|$	Marks 6 $\mathbf{C L O}$ $\mathbf{2}$
		A two- pole low pass filter has the system response	$\underset{6}{\text { Marks }}$

Q. 3	(a)	$H(z)={\frac{b_{o}}{\left(1-p_{Z}\right.}}^{-1)^{2}}$ Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the condition $\mathrm{H}(0)=1$ and $\|H(\pi)\|^{2}=1$.	$\begin{gathered} \text { CLO } \\ 3 \end{gathered}$
	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega=4 \pi / 9$.	Marks $\mathbf{6}$
Q 4	(a)	A finite duration sequence of Length L is given as $x(n)=\left\{\begin{array}{rr} 1, & 0 \leq n \leq L-1 \\ 0, & \text { otherwise } \end{array}\right.$ Determine the N - point DFT of this sequence for $\mathrm{N} \geq \mathrm{L}$	Marks $\mathbf{6}$ $\mathbf{C L O}$ 2
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
		$x_{1}(n)=\{2 \uparrow, 1,2,1\}$ $x_{2}(n)=\left\{1_{\uparrow, 2,3,4\}}\right.$	$\underset{2}{\text { CLO }}$

$$
\begin{aligned}
& \text { NAME H Juncid- Les Rehman } \\
& \text { in \# } 11484
\end{aligned}
$$

(1) (t) Ans H

Soult

$$
y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)
$$

The character equation is

$$
\begin{aligned}
& \lambda^{2}-4 \lambda+4=0 \\
& \lambda=2,2 \text { Hence } \\
& y_{n}(m)=c_{1} 2^{n}+c_{2} n^{n}
\end{aligned}
$$

The particular solution is
Substituting this solution into different equation
we obtain

$$
k(-1)^{n} v(n)-4 k(-1)^{n-1} u(n-1)+4 k(-1)^{n-2} u(n-2)=
$$

$$
(-1)^{n} \cup(n)-(-1)^{n-1} \cup(n-1)
$$

For $n=2, k(1+4+4)=2 \Rightarrow k=\frac{2}{9}$ The total solution is

$$
y(n)\left[(1)^{n}+\left(2 n^{2} 2^{n}+\frac{2}{9}(-9)^{n}\right] u(n]\right.
$$

from the instal Condition, we obtain $y(0)=1, y(1)=2$ Then

$$
\begin{array}{r}
c_{1}+\frac{2}{9}=1 \\
\Rightarrow c_{1}=\frac{7}{9} \\
2 c_{1}+2 c_{2}-\frac{2}{9}=2 \\
\Rightarrow c_{2}=\frac{1}{3}
\end{array}
$$

(ib) \# Sol\#
gen eoodigeline to oryenerne rems).

$$
y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)
$$

The chamactritic equation is

$$
\lambda^{2}-0.7 \lambda+0.1=0
$$

$\lambda=\frac{1}{2}, \frac{1}{5}$ Hence

$$
y_{n}(n)=c_{1} \frac{1}{2}^{n}+c_{2} \frac{1^{n}}{}
$$

With $x(n)=\delta(n)$, wee have

$$
\begin{gathered}
y(0)=2 \\
y(1)=07 y(0)=0 \Rightarrow y(1)=1.4
\end{gathered}
$$

Hence $\mathrm{C}_{1}+\mathrm{c}_{2}=2$ and

$$
\begin{aligned}
& \frac{1}{2} \quad c_{1}+\frac{1}{5}=1 \cdot 4=\frac{7}{5} \\
& \Rightarrow \quad c_{1}+\frac{2}{5} c_{2}=\frac{144}{5}
\end{aligned}
$$

Thor equation yield

$$
\begin{aligned}
& a_{1}=\frac{10}{3}, c_{2}=-\frac{4}{3} \\
& h(n)=\left[\frac{10}{3}\left(\frac{1}{2}\right)^{n-} \frac{4}{3}\left(\frac{1}{5}\right)^{n}\right] u(n)
\end{aligned}
$$

$\frac{\text { Ans } 2(b)}{\text { sola }}$

$$
x(z)=\frac{1}{1-a z^{-1}} \quad|z|>|a|
$$

Using complex inversion intigal
ware hall

$$
x(n)=\frac{1}{2 \pi j} \oint \frac{z^{n-1}}{c 1-a z^{-1}} d z=\frac{1}{2 \pi} ; \oint_{2} \frac{z^{n} d z}{z-a}
$$

Where c is u circle at radius greater then lat we shell evalute this integral using $f(z)=2^{n}$. We distinguish two cases

1. if $n \geq 0 . f(2)$ has only zero and hance no poles ines C. The only pole inside cis $z=$ a Hence

$$
x(n)=f(20)=a^{n} \quad n \geq 0
$$

$2 \rightarrow$ if $n<0$, $(z)=z^{n}$ has on nth -order pol at $z=0$ Which is also inside there are contributions from both poles

$$
\text { if } \begin{aligned}
& n=-2 k e ~ h a v e ~ \\
& \quad\left.\quad(-2)=\left.\frac{1}{2 \pi j} \oint c \frac{1}{z^{2}(2 \cdot a)} d z \frac{d}{d z}\left(\frac{1}{z-a}\right)\right|_{2=0}+\frac{1}{z^{2}}\right)=0 \\
& z=0
\end{aligned}
$$

By continuing in the same way, we con show that $x(n)=0$ for $n<0$ thus

$$
x(n)=a^{n} u(n)
$$

Answer.

O3(a) SOHO
At $\omega=0$ wee have

$$
H(0)=\frac{b_{0}}{(1-p)^{2}}=1
$$

Hence bo $=(1-p)^{2}$
At $W=\pi / 4$

$$
H\left(\frac{\pi}{4}\right)=\frac{(1-p)^{2}}{\left(1-p e^{-j \pi / 4}\right)^{2}}
$$

$$
\begin{aligned}
& =\frac{(1-p)^{2}}{\left(1-p \cos \left(\frac{\pi}{4}\right)+j p \sin \left(\frac{\pi}{4}\right)^{2}\right)^{2}} \\
& =\frac{(1-p)^{2}}{\left(1-p / \sqrt{2}+j \rho /[2)^{2}\right.} \\
& \frac{(1-p)^{4}}{\left[(1-\rho / / 2)^{2}+p^{2} / \rho 2\right]^{2}}=\frac{1}{2}
\end{aligned}
$$

$$
I_{2}(1-p)^{2}=1+p^{2}-\sqrt{2} p
$$

The value of $P=0.32$ satisfied this equation

$$
H(z)=\frac{0.46}{\left(1-0.322^{-1}\right)^{2}} \text { shower }
$$

Q 3 (b) Solution \# the Filter must have poos at

$$
p_{12}=r e^{n \pi / 2}
$$

and zero at $z=1$ and $z=-1$. consequently the system is

$$
\begin{aligned}
H(z) & =G \frac{(z-1)(z+1)}{(z-j v)\left(z+j^{k}\right)} \\
& =G \frac{z^{2}-1}{z^{2}}+\gamma^{2}
\end{aligned}
$$

The gain factor is determine by evaluating the prequing $H(w)$ of the filter at $\omega=\pi / 2$ Thus we nave

$$
\begin{gathered}
H\left(\frac{\pi}{2}\right)=G \frac{2}{1-\gamma^{2}}=1 \\
G=\frac{1-\gamma^{2}}{2}
\end{gathered}
$$

The value of r is determined by evaluating $H(\omega)$ at $\omega=4 \pi / 9$. Thus we hake

$$
\left.\int H=\left(\frac{4 \pi}{9}\right)\right]^{2}=\frac{\left(1-\gamma^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{1+\gamma^{2}+2 \gamma^{2} \cos (8 \pi / 9)}=\frac{1}{2}
$$

or equivalently

$$
1.94\left(1-r^{2}\right)^{2}=1-1.881^{2}+r^{4}
$$

The value of $r^{2}=0.7$ satisfied this equation. Therefore the system function for the desired filter is

$$
H(2)=0.15 \frac{1-2^{-2}}{1+0.72^{-2}}
$$

