Department of Electrical Engineering
 Assignment

Date:
13/04/2020

Course Details

Course Title:	Linear Circuit Analysis	Module:
Instructor:	Dr. Sohail Imran	Total Marks:

Name:

Ali Raza

Student ID:16309

Student

Details

Q1	(a)	For each of the circuits in figure, find the current I and compute the power absorbed by the resistor	Marks 3 PLO1
	(b)	Determine the power supplied by the leftmost element in the circuit of following figure	Marks 4 PLO1
	(c)	Following figure $-10 \mathrm{~V}+\vdots$ of three different resistive elements. Determıne the resistance of each, assuming the voltage and current are defined in accordance with the passive sign convention.	Marks 3
			PLO1

Q3	(a)	Although drawn so that it may not appear obvious at first glance, the circuit of following figure is in fact a single-node-pair circuit. a. Determine the power absorbed by each resistor. b. Determine the power supplied by each current source. c. Show that the sum of the absorbed power calculated in (a) is equal to the sum of the supplied power calculated in (b).	$\begin{array}{\|l\|} \hline \text { Marks } \\ 5 \\ \hline \text { PLO1 } \\ \hline \end{array}$
	(b)	Determine the power absorbed by the 15Ω resistor in the circuit of following figure	$\begin{array}{\|l} \hline \text { Marks } \\ 5 \\ \hline \text { PLO1 } \\ \hline \end{array}$

Question 1)
Part (A)
SOLUTION:
Finding current(I)
a)

Ohm's law state that
$\mathrm{V}=\mathrm{I} \times \mathrm{R}$
$\mathrm{I}=\frac{V}{R}$
$\mathrm{I}=\frac{5 \mathrm{~V}}{10 \mathrm{~K} \Omega}$
$\mathrm{I}=0.5 \mathrm{~mA}$
b)

Solution:-
$\mathrm{V}=\mathrm{I} \times \mathrm{R}$
$\mathrm{I}=\frac{V}{R}$
$\mathrm{I}=\frac{-(5 \mathrm{~V})}{10 \mathrm{~K} \Omega}$
$\mathrm{I}=-0.5 \mathrm{~mA}$
c)
solution :-
$\mathrm{I}=\frac{V}{R}$
$\mathrm{I}=\frac{-5 \mathrm{~V}}{10 \mathrm{~K} \Omega}$
$\mathrm{I}=-0.5 \mathrm{~mA}$
d)
solution:-
$\mathrm{I}=\frac{V}{R}$
$\mathrm{I}=\frac{-(-5 \mathrm{~V})}{10 \mathrm{~K} \Omega}$
$\mathrm{I}=0.5 \mathrm{~mA}$
Now finding Power,
Power absorbed by all the resistors is
$P_{R}=I^{2} \times R$
Putting values
$P_{R}=\left((\pm 0.5)^{2} \times 10^{-3}\right) \times\left(10 \times 10^{3}\right)$
$P_{R}=2.5 \mathrm{~mW}$
PART (B)
Solution:-
Since we know both the value of I and V is the left most element we can calculate,
$P=V I$
$\mathrm{P}=(2 \mathrm{v} \times 2 \mathrm{~A})$
$\mathrm{P}=4 \mathrm{~W}$
Because of the direction of current through the element we know that the power is supplied.
PART (C)
Ohm's law states that
V=IR
$\mathrm{R}=\frac{V}{I}$
So we can calculate R from the slope on the graph
We can take any point on line to get the value of I and V.
a)
$\mathrm{R}=\frac{V}{I}$
$\mathrm{R}=\frac{2}{0.02 \times 10^{-3}}$
$\mathrm{R}=100 \mathrm{k} \Omega$
b)
$\mathrm{I}=0 \mathrm{~A}, \mathrm{~V}=1 \mathrm{v}$
$\mathrm{R}=\frac{V}{I}$
$\mathrm{R}=\frac{1}{0}$
$\mathrm{R}=\infty \Omega$
c)
$\mathrm{I}=0.03 \mathrm{~mA}, \mathrm{~V}=0 \mathrm{v}$
$\mathrm{R}=\frac{V}{I}$
$\mathrm{R}=\frac{0}{0.03 \times 10^{-3}}$
$\mathrm{R}=0 \Omega$

QUESTION 2
SOLUTION:-

1. If we look at the given figure we get,
a) Nodes $=4$
b)
now if we start at point A and move to point B we move to another node and that means we formed a path but we visited each node only once so there is no loop,
Path=yes
Loop=No
c)

And we do the same for part. After moving from C to F ,F to G. we are still in the same node. Therefore ,
Path $=$ No
Loop $=$ No
2. Number of elements in the circuit are 6

Part B($2^{\text {nd }}$ diagram $)$

a) As seen in the given circuit point B to A and Care the the same node additionally we have other 2 nodes E and D. Thus the number of node is 3 .
b) We have 4 resistors in the given circuit thus the number of elements is 4 .
c) We define a branch as a single path in a network, composed of one simple element and the node at each end of that element. Thus we have 4 branches in the given circuit.
d)
i) This is neither a path nor a loop nor both. This is because point A and B are the same (considered as a single node).
ii) This is a path because no node was encounter more than once.
iii) This is both a path and a loop because the node at which we started (C) is the same as the node on which we ended (C), then this path is by definition a closed path or a loop.
iv) This is neither a path nor a loop nor both, because the node C was encountered twice but the path was ended at the node E not C .

QUESTION 2
PART (B)
SOLUTION:-
Applying KCL
$I_{B}+I_{C}=I_{E}$
So,
$I_{C}=150 \times I_{B}$
$I_{C}=150 \times 100 \times 10^{-6}$
$I_{c}=15 \mathrm{~mA}$
Now we can find I_{E}
$I_{E}=I_{c}+I_{B}$
$I_{E}=15 \times 10^{-3}+100 \times 10^{-6}$
$I_{E}=15.1 \mathrm{~mA}$
QUESTION 3)
PART (A)
We can find V by combining similar elements
$\mathrm{V}=\mathrm{IR}$
$\mathrm{V}=2 \times 10^{-3} \times 637$
$=1.274 \mathrm{v}$
Now lets find I of each
$I_{X}=\frac{1.274}{1000}$
$=1.274 \mathrm{~mA}$
$I_{Y}=\frac{1.274}{2800}$
$=0.455 \mathrm{~mA}$
$I_{Z}=\frac{1.274}{4700}$
$=0.271 \mathrm{~mA}$
Now finding Power
P=VI
$P_{(2.8 K)}=(1.274)(0.455)$
$=0.5792 \mathrm{~mW}$
$P_{(4.7 k)}=(1.274)(1.271)$
$=1.623 \mathrm{~mW}$
$P_{(1 k)}=(1.274)(1.274)$
$=1.523 \mathrm{~mW}$
$P_{(5 \mathrm{~mA})}=(1.274)(-5)$
$=6.37 \mathrm{~mW}$
$P_{(3 m A)}=(1.274)(3)$
$=3.822 \mathrm{~mW}$

PART B

SOLUTION:-
$R_{(X)}=[(3 \| 15)+6] \| 6$
$=[2.5+6] \| 6$
$=8.5 \| 6$
$=\frac{8.5 \times 6}{8.5+6}$
$=\frac{102}{29} \Omega$
The equivalent current source,
$I_{T}=-4+2 i-3+9$
$=2+2 \mathrm{i}$ (downward)
Applying KCL
$2+2 \mathrm{i}+\frac{v_{x}}{\frac{102}{29}}+i=0$
$2+3\left(\frac{v_{x}}{6}\right)+\frac{v_{x}}{\frac{102}{29}}=0$
Solving this equation, We obtain
$v_{x}=-2.55 v$
(a) The equivalent resistance of the parallel two resistors
$3 \| 15=\frac{3 \times 15}{3+15}=2.5 \Omega$
(b) Using ohm's law, we obtain
$\mathrm{i} 6=\frac{v_{x}}{2.6+6}=\frac{-2.55}{8.5}$
$=-0.3 \mathrm{~A}$

Thus,
$v_{15}=2.5 \times i 6$
$=(2.5)(-0.3)$
$=0.75 \mathrm{v}$

Therefore, the power absorbed by the 15Ω is
$P_{15 \Omega}=\frac{v^{2}{ }_{15}}{15}$
$\frac{(-0.75)^{2}}{15}$
$=37.5 \mathrm{~mW}$

First, we will simplify the circuit by calculating source and resistor equivalences
$I_{e q}=4-2 \mathrm{i}+3-9$
$=-2-2 i$
$R_{\text {eq }}=(6+3 \| 15)\|6\| 6$
$R_{e q}=8.5 \| 3$
$=2.2174 \Omega$

Now, can calculate voltage v as,
$\mathrm{V}=i_{e q} \times R_{e q}$
$\mathrm{V}=(-2-2 \mathrm{i}) \times 2.2174 \Omega$

And from the diagram we can see that, $\mathrm{V}=6 \mathrm{i}$
$6 \mathrm{i}=(-2-2 \mathrm{i}) \times 2.2174$
$10.4348 i=-4.4348$
$\mathrm{i}=-0.425 \mathrm{~A}$
$\mathrm{V}=-2.55 \mathrm{v}$
To get the power consumed by the 15 ohm resistor will need the voltage on that resistor two, $\mathrm{P}=\frac{V^{2}}{R}$

$$
\begin{gathered}
P_{15 \Omega}=\frac{V_{15 \Omega}^{2}}{15 \Omega} \\
V_{15 \Omega}=\frac{6}{6+2.5} \times v \\
V_{15 \Omega}=1.8 v
\end{gathered}
$$

And the power is,

$$
\begin{gathered}
P_{15 \Omega}=\frac{1.8^{2}}{15 \Omega} \\
P_{15 \Omega}=0.216 \mathrm{~W}
\end{gathered}
$$

For calculating equivalent resistance we use the following expressions, Series $\left(R_{1}+R_{2}\right)$

$$
R_{e q}=R_{1}+R_{2}
$$

$$
\operatorname{Parallel}\left(R_{1} \| R_{2}\right)
$$

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& R_{e q}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Now we can calculate the equivalnces as,

$$
\begin{gathered}
R_{e q}=1 \Omega+2 \Omega \| 2 \Omega \\
R_{e q}=1 \Omega+\frac{2 \Omega \times 2 \Omega}{2 \Omega+2 \Omega} \\
R_{e q}=1 \Omega+1 \Omega \\
R_{e q}=2 \Omega
\end{gathered}
$$

b)

$$
\begin{gathered}
R_{e q}=4 \Omega+\frac{1 \Omega \times 2 \Omega}{1 \Omega+2 \Omega}+3 \Omega \\
R_{e q}=7.667 \Omega
\end{gathered}
$$

