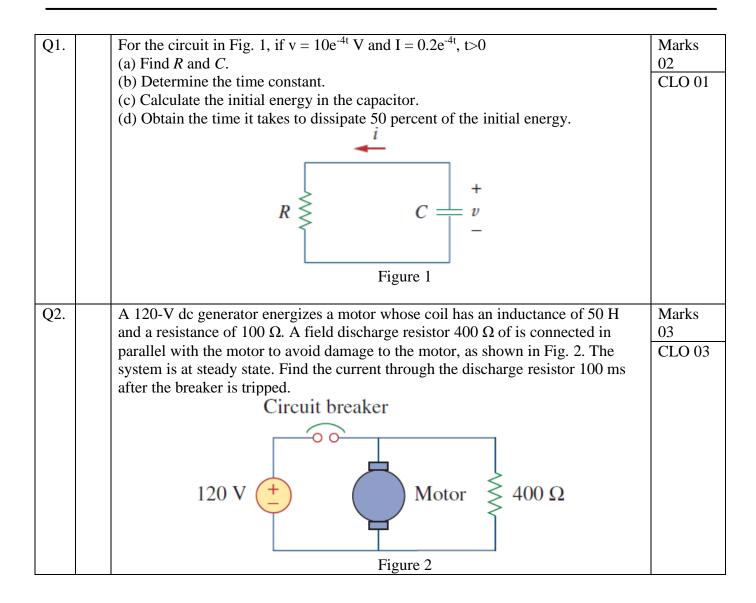
Department of Electrical Engineering

Assignment

Date: 07/05/2020

Course	Details
Course	Details

Course Title:	Electrical Network Analysis	Module:	4th
Instructor:		Total	20
		Marks:	

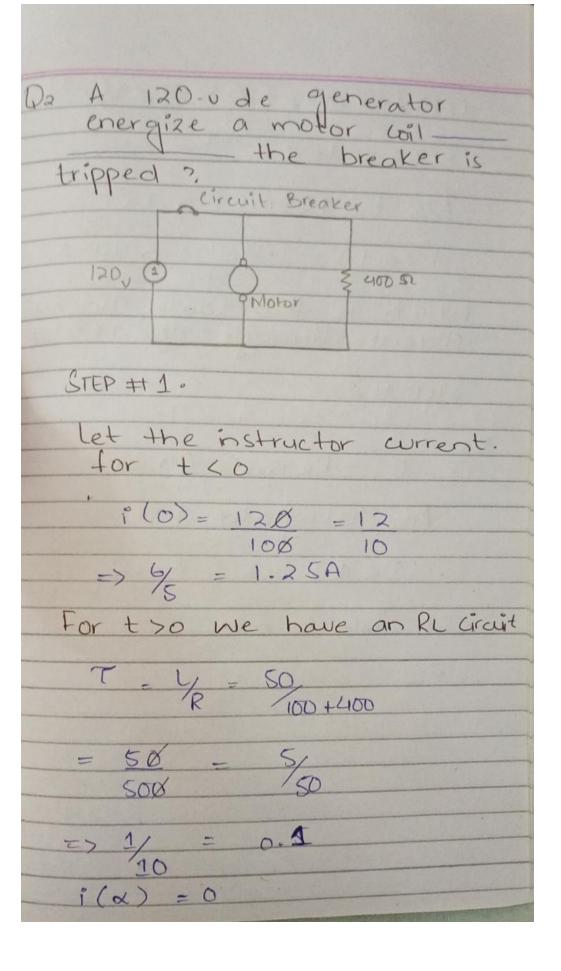

Submission Deadline

05/06/2020

Student Details

Name: DANISH HAYAT Student ID: 14566

Student Signature:


Q3.	The responses of a series <i>RLC</i> circuit are	Marks	
	$v_c(t) = 30-10e^{-20t} + 30e^{-10t} V$	02	
	$i_L(t) = 40e^{-20t} - 60e^{-10t} \text{ mA}$	CLO 01	
	where v _c and i _L are the capacitor voltage and inductor current respectively.		
	Determine the values of R, L, C		
Q4.	The circuit in Fig. 3 is the electrical analog of body functions used in medical		
	schools to study convulsions. The analog is as follows:	03	
	C_1 = Volume of fluid in a drug	CLO 03	
	C_2 = Volume of blood stream in a specified region		
	R_1 = Resistance in the passage of the drug from the input to the blood stream		
	R_2 = Resistance of the excretion mechanism, such as kidney, etc.		
	v0 = Initial concentration of the drug dosage		
	v(t) = Percentage of the drug in the blood stream		
	Find v(t) for t>0 given that $C_1 = 0.5\mu\text{F}$, $C_2 = 5\mu\text{F}$, $R_1 = 5M\Omega$, $R_2 = 2.5 \text{ M}\Omega$ and v_0		
	=60u(t) V		
	D D		
	t=0		
	<u></u>		
	+ ' ' \ + +		
	$v_0 \stackrel{\perp}{=} C_1$ $R_2 \stackrel{>}{\leq} C_2 \stackrel{\perp}{=} v(t)$		
	Figure 3		
Q5.	A power transmission system is modeled as shown in Fig. 4. Given the source	Marks 02	
	voltage and circuit elements		
	Source voltage $Vs = 115 \angle 0 V$,		
	Source impedance $Zs = 1 + j0.5 \Omega$,		
	Line impedance $Z_1 = 0.4 + j0.3 \Omega$,		
	Load impedance $Z_L = 23.2 + j18.9 \Omega$,		
	find the load current I_L Z_s Z_ℓ		
	$\mathbf{Z}_{\mathcal{S}}$ \mathbf{Z}_{ℓ}		
	$v_s \stackrel{+}{-}$		
	\mathbf{Z}_ℓ		
	Source Transmission line Load		
	Figure 4		

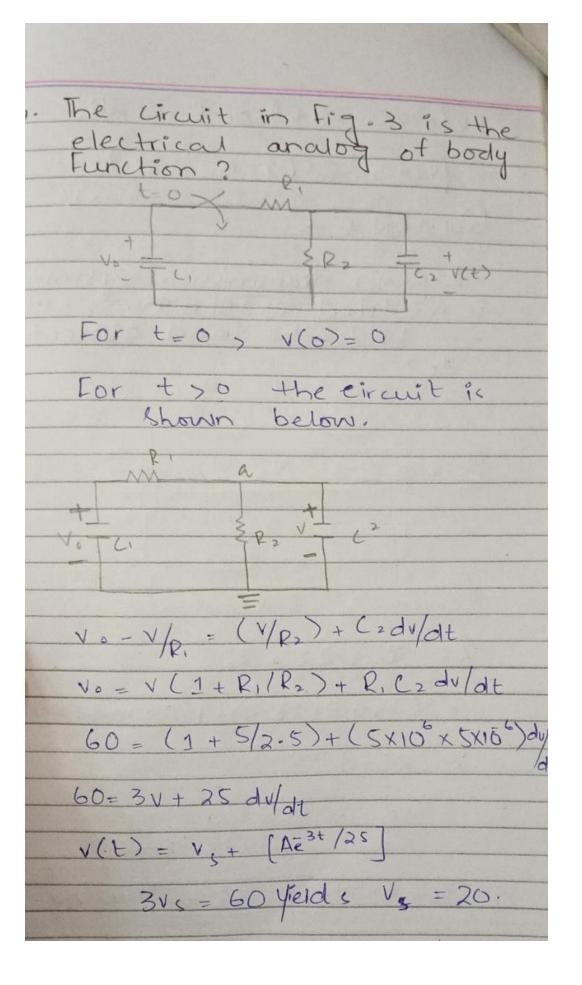
Q 6	For the circuit in Fig. 5, find the average, reactive, and complex power delivered by the dependent current source. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marks 03 CLO 03
Q 7	A balanced Y-load is connected to a 60-Hz three-phase source with $V_{ab} = 240$ $\angle 0^{\circ}$ V. The load has pf = 0.5 lagging and each phase draws 5 kW. (a) Determine the load impedance Z_Y . (b) Find I_a , I_b , and I_c .	Marks 5 CLO02

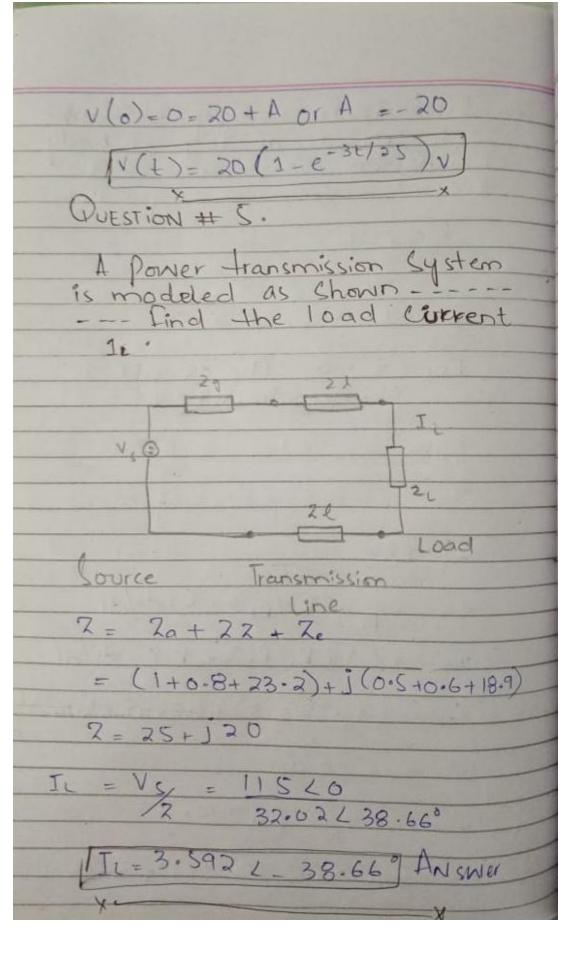
)1: For the circuit in fig #1
if v= 10et 29 0. 2ett 9 t>1 as find R 29 c (b) - (c) - (d) - 50% of the initial energy STEP 1 (A) => -0.2e-4t = c(10)(-4)e-4t => C= SmF R= 1/41 = 501 STEP # 2: B T = Rc = 1/4 = 0.250

STEP #3:

$$W_{c}(0) = \frac{1}{2}(u^{2})^{2}$$

 $= \frac{1}{2}(5\times10^{-3})(100)$
 $= \frac{1}{2}(5\times10^{-3})(100)$




i(t) = i(x) + [i(0) - i(x)]e-1. "(t) = 1.2 e-10 E At t= 100ms = 0.15 9 (0-1) = 1.2e1 = 0.441 A. Which is the same as the Current through the resistor STEP #2 By T = Rcms = 60 us An integrator TCO-1 T = 645 TMax = 6US

QUESTION #3. The response of Series RLC Lircuit the value of Rola STEP # 1: Series Ric ciruit. V(+)= 30-10 e-20t +30e-10tu v(t) = v. + A, e 510 + A2 e 52 [x > x)] 40e-20t - 60e-30t mA => i(t) = A, est + Azes2+ [0 > 0 0] Comparing these eq.... we get V5 = 30 $A_1 = -10^{\circ}$ $A_2 = 30^{\circ}$ $S_1 = -20^{\circ}$ $S_2 = -10^{\circ}$ $S_3 = -10^{\circ}$ $A'_{1} = 40; A'_{2} = -60;$ $S'_{2} = -20; S'_{2} = -10 \rightarrow (6)$ STEP H 2 Now eq (a) 29 (b) S1 = - x + Jx2+ x2 And S2 = -x - Jx2-x2
S1+S2 = -2x 29 S, S2 = x2

[Where
$$\alpha = R : 200 = 1/\sqrt{10}$$
]

= $200 = 200 =$

For the Circuit in Fig #5

Find the ave - - 9

dependent current source? Consider the Circuit as Shown At node o 24-Vo1= Vo + Vo-VI 4 1 - j 24= (5+ j4) Vo - J4V, >(1) At node 1. Vo-VI + 2V0 - VI -j VI = (2-j4) Vo -> (2) Substituling (2) into (1) 24= (5+ j4- j8-16) Vo V = - 24 , V, = (-24)(2-54) Voltage across athe dependent V2= V1+ (2)(2V0) = V1+ 4V0 $V_2 = -24 (2 - j_4) = (-24)(6 - j_4)$ $11 + j_4$ $(1 + j_4)$ = (576) (6-14) S= 25.23 - JIL.82 VA

QUESTION # 7.
A balance Y-load to a 60Hz three Phase Phase drow
(a) determine the load independence 2 (b) Find Ia Ib 2p Ic
a) STEP#1.
vlab = \(\frac{13}{9} = \frac{240}{9} \to p = \frac{240}{3} = \frac{138.56}{3} \\ \text{V} = \text{Vp \(\left(-30^{\circ}) \)
Pf = 0.5 = (050
$P = S \cos 0 \rightarrow S = P = S = 10 \text{ KuA}$ $\cos Q = S \sin 0 = 10 \sin 60 = 8.66$
Sp = 5 + j8 - 66 KVA.
But $SP = VP^2 \rightarrow ZP = V^2P = 138.56^2$ $ZP = VP^2 \rightarrow ZP = V^2P = 138.56^2$ $ZP = VP^2 \rightarrow ZP = V^2P = 138.56^2$

(B) STEP 2 : Ia = V = 138.562-30° = 72.17(90°A Ib= Io 2-120°= 720172-210° A IC = Ia < +120 = 72-17 < 30°A.