Name-Muhammad Mambun

$$
\begin{aligned}
& I D=7690 \\
& \delta_{e c}=C
\end{aligned}
$$

PAPER= Hydrulic Structure.
DATE $=24 /$ June $/ 2020$

Question =1:-

ANSWER:

$$
\text { 官 CUVERT }] \times \text { CAUSE - WAY }
$$

1 Culvert is of a A cause way is of tunnel shape carrying course a raised road a stream of it is built on an water under a ambankment. road or railway

2 It works as a $[t$ is support mostly bridge to pass on by earth or stone.
3. It is normally uses from natural flow of water for controling it support a ratween piers.

Question :1:
PART (B)
Answer:

* CROSS DRAINAGE WORK: is a structure carying the discharge from a natural steam across a channel. intercepting the stream.
NECESSARY:
It is required to dispose of the drainage water so that the channel supply water remains uninterrupted.

Types:
Some types of cross drainage arc following

Adequate:
It carves an irrigation channels over a drain.
2. Supper Passage:

It carries a drain over irrigation channels.
3. LEVEL GROSSING:

This structure makes it possible to dispose of drain water safely at same level as that of a channel.
4. TNLET ANO OUTLET:

When possible drain cater is taken in the carnal to be discharge after wares into a drain at suitible location.

Question $=2$:
PART (A)

ANSWER:
Weir:
Weir are commonly wed to control flow rates of rivers during periods of high discharge. sluice gates are used to increase or decrease the volume of water going out.

- Barrage:

It is used to convert tidal energy into electricity by forcing water through turbines by activating a generator.

Questron:2:
PART. (B)

AnsWER:
K BexNOIDS NUMBER:
The product
of: density times length divided by viscocity coefficient.

This. is propostional to the ratio of inertial forces and viscous in a fluid fol.
\# LAMINAR:
The flow in a pipe is laminar if the reynolds number loss than 2100 .
a TURBULANT:
If the reynolds number is greater than 4000 than $i t$ is turbulant.

NETHER LAMINAR NOR TURBLLANTL Flow:

When the reynolds number is between 2000 and 2800. The flow is neither laminar. nor turbulant

- Lower Critical velocity: The velocity at which flow change from laminar te Lansitions is called lower critical velocity.
* Higher critical velocity) yovelocity at which flow change from transition to Ewhulante is called higher critical velocity.

Component parts of barrage
-

$\frac{\text { (घ) }=1 \text { Iतु }}{E=1015 \pi 0}$

8-d

In case of multispan
stuctuse it as 100% more thon hormal scaur. The marimium scaur elepth is

$$
D_{\max }=\operatorname{Rs}(\omega / L)^{1.56}
$$

QUESTION $=4$
Given DAta:
Inside dimention $=15 \mathrm{ft} \times 15 \mathrm{ft}$
live $10 \mathrm{ad}=1.5 \mathrm{k} / \mathrm{p}^{2}=1500 \mathrm{lb} / \mathrm{ft}^{2}$
Dead load $=300 \mathrm{lb} / \mathrm{ft}^{2}$
Unit weight of soil $=100 / \mathrm{b} / \mathrm{tt}^{-3}$
Angle of repose $=30^{\circ}$
Use concrete of $1: 2: 4$ ratio

$$
\begin{aligned}
& \text { by }=60 k s i \\
& \text { Thickness }=0.92 m=3 f t .
\end{aligned}
$$

Required Dam:
Design of box calvert = ?

SOUTLON:

- Load Calculation:

Total load carry on top slab= =self weight of slab $+1.1 \cdot 0.1$

Self weight of slab $=3 \times 150$

$$
\begin{aligned}
\omega=450+1500+300 & =2250 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

${ }_{2}$ Co-efficient of Earth pressure:

$$
\begin{aligned}
& k a=\frac{1-\sin d}{1+\sin d} \\
& k a=\frac{1-\sin (30)}{1+\sin (30)} \\
& k a=0.33
\end{aligned}
$$

3 Lateral Pressure Due to $(1 \cdot 1+L \cdot L)$

$$
\begin{aligned}
& =\frac{\text { Total vertical load }}{(1.1+D .1) \times k} \\
& =(1500+300) \times 0.33 \\
& =594 \mathrm{lb} / \mathrm{ft}^{-2}
\end{aligned}
$$

4 Lateral Pressure Ducto Soil:

$$
\begin{aligned}
& =k a \times \gamma \times h \\
& =0.33 \times 100 \times 18 \\
& =594 \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

s: Lateral Pressure:
(A) TOP: \qquad $=594 \mathrm{lb} / \mathrm{ft}^{2}$
(b) Bottom:
= Lateral pressure due to $(D \cdot L+L \cdot L)$ trilateral pressure due to soil.

$$
\begin{aligned}
& =594+594 \\
& =118816 / \mathrm{ft}^{2}
\end{aligned}
$$

$$
1188 \quad \mathrm{lb} / \mathrm{ft}
$$

