
 

IQRA NATIONAL 
UNIVERSITY  

Spring 2020 Final-Term Examination 

Course Name Course 
Code 

Max. 
Marks 

Max. 
Time 

Date Instructor 

Software Design & Architecture SEE-302 50 6 hrs. 
9-3 PM 

23rd June  
2020 

Aasma Khan 

 
________________________________________________________________ 
 

ID: 14646  NAME: Abdul Musawer 
________________________________________________________________ 
 
● Attempt all questions. 
● Marks will be given as per the DEPTH of the answer, not LENGTH.  

Question No: 01  (5+5) 

a) What is Software Architecture? Why is software architecture design so important? 

Answer: SOFTWARE ARCHITECTURE: 

The software architecture of a system depicts the        
system’s organization or structure, and provides an explanation of how it behaves. A system              
represents the collection of components that accomplish a specific function or set of             
functions. In other words, the software architecture provides a sturdy foundation on which             
software can be built. 

 

IMPORTANCE OF SOFTWARE ARCHITECTURE DESIGN: 

Communication among stakeholders Every stakeholder has different concerns; SW 
Architecture can be used as a basis for mutual understanding, negotiation, consensus, and 
communication among stakeholders. 

Early design decisions 

1. Software architecture manifests the earliest design decisions, these decision are 
a. the most difficult to get correct and 
b. the hardest to change later 

2. The Architecture Defines Constraints on Implementation 
a. Implementation must conform to 
b. prescribed design decisions 



c. resource allocation decisions 
3. Architectures are both prescriptive and descriptive 

a. The Architecture Dictates Organizational Structure. 
4. work breakdown structure 

a. work assignments to teams 
b. plans, schedules, budgets 
c. communication channels among teams 
d. dependency and coupling important for work assignment 

 b) Explain any four tasks of the architect. 

Answer: FOUR TASKS OF THE SOFTWARE ARCHITECT: 

1. A software architect needs to interact with clients, product managers, and developers 
in order to envision, model and provide initial models and designs that can be built. 
This role also may cover the meeting potential or current customers. 

2. A software architect has to constantly review the code to ensure the quality of the 
design by avoiding complexity, advocating clarity and to do this with the team. This 
usually requires hands-on work in terms of developing prototypes, contributing code 
or evaluating technologies. 

3. The role of a software architect includes collaborative working with a degree of 
humility and providing mentoring as required. Such collaboration also allows the 
architect to become familiar with the skills and interests in the team and to share their 
knowledge with the rest of the team. Humility is required to ensure that all the team is 
listened to, as they may have more specific experience or knowledge for the problem 
at hand. 

4. Ensure software meets all requirements of quality, security, modifiability, 
extensibility etc. 

___________________________________________________________________________ 

Question No: 02  (10)  

Explain Architecture Business Cycle (ABC) in detail with figure. 

Answer: 

ARCHITECTURE BUSINESS CYCLE (ABC): 

“Software architecture is a result of technical,        
business, and social influences. Its existence in turn affects the technical, business, and social              
environments that subsequently influence future architectures. We call this cycle of influences, from             
the environment to the architecture and back to the environment, the Architecture Business Cycle              
(ABC).” 

The organization goals of Architecture Business Cycle are beget requirements, which beget an             

architecture, which begets a system. The architecture flows from the architect's experience and the              

technical environment of the day. 

Three things required for ABC are as follows: 



(i) Case studies of successful architectures crafted to satisfy demanding requirements, so as to help               

set the technical playing field of the day. (ii) Methods to assess an architecture before any system is                  

built from it, so as to mitigate the risks associated with launching unprecedented designs.              

(iii)Techniques for incremental architecture-based development, so as to uncover design flaws before            

it is too late to correct them. 

 

ABC Activities Include: 

1. Create the business case. 

2. Understand the requirement. 

3. Create the architecture. 

4. Document and communicate the architecture. 

5. Analyze the architecture. 

6. Implement the system based on Architecture. 

7. conforms the implementation. 

How the ABC Works : 

1. The architecture affects the structure of the developing organization. An architecture prescribes a              

structure for a system; as we will see, it particularly prescribes the units of software that must be                  

implemented (or otherwise obtained) and integrated to form the system. These units are the basis for                

the development project's structure. Teams are formed for individual software units; and the             

development, test, and integration activities all revolve around the units. Likewise, schedules and             

budgets allocate resources in chunks corresponding to the units. If a company becomes adept at               

building families of similar systems, it will tend to invest in each team by nurturing each area of                  

expertise. Teams become embedded in the organization's structure. This is feedback from the             

architecture to the developing organization. 

In the software product line case study, separate groups were given responsibility for building and               

maintaining individual portions of the organization's architecture for a family of products. In any              

design undertaken by the organization at large, these groups have a strong voice in the system's                

decomposition, pressuring for the continued existence of the portions they control. 

2. The architecture can affect the goals of the developing organization. A successful system built from                

it can enable a company to establish a foothold in a particular market area. The architecture can                 

provide opportunities for the efficient production and deployment of similar systems, and the             



organization may adjust its goals to take advantage of its newfound expertise to plumb the market.                

This is feedback from the system to the developing organization and the systems it builds. 

3. The architecture can affect customer requirements for the next system by giving the customer the                

opportunity to receive a system (based on the same architecture) in a more reliable, timely, and                

economical manner than if the subsequent system were to be built from scratch. The customer may be                 

willing to relax some requirements to gain these economies. Shrink-wrapped software has clearly             

affected people's requirements by providing solutions that are not tailored to their precise needs but               

are instead inexpensive and (in the best of all possible worlds) of high quality. Product lines have the                  

same effect on customers who cannot be so flexible with their requirements. A Case Study in Product                 

Line Development will show how a product line architecture caused customers to happily             

compromise their requirements because they could get high-quality software that fit their basic needs              

quickly, reliably, and at lower cost. 

4. The process of system building will affect the architect's experience with subsequent systems by               

adding to the corporate experience base. A system that was successfully built around a tool bus or                 

.NET or encapsulated finite-state machines will engender similar systems built the same way in the               

future. On the other hand, architectures that fail are less likely to be chosen for future projects. 

5. A few systems will influence and actually change the software engineering culture, that is, the                

technical environment in which system builders operate and learn. The first relational databases,             

compiler generators, and table-driven operating systems had this effect in the 1960s and early 1970s;               

the first spreadsheets and windowing systems, in the 1980s. The World Wide Web is the example for                 

the 1990s. J2EE may be the example for the first decade of the twenty-first century. When such                 

pathfinder systems are constructed, subsequent systems are affected by their legacy. 

___________________________________________________________________________ 

Question No: 03  (10) 

Explain ABC Activities? 

Answer: 

ABC ACTIVITIES: 

1. Creating the business case for the system 
2. Understanding the requirements 
3. Creating or selecting the architecture 
4. Documenting and communicating the architecture 
5. Analyzing or evaluating the architecture 
6. Implementing the system based on the architecture 



7. Ensuring that the implementation conforms to the architecture 
 

1. Creating the Business Case for the System 

Creating a business case is broader than simply assessing the market need for a              
system. It is an important step in creating and constraining any future requirements. How              
much should the product cost? What is its targeted market? What is its targeted time to                
market? Will it need to interface with other systems? Are there system limitations that it must                
work within? 

These are all questions that must involve the system's architects. They cannot be decided              
solely by an architect, but if an architect is not consulted in the creation of the business case,                  
it may be impossible to achieve the business goals. 

2. Understanding the Requirements 

There are a variety of techniques for eliciting requirements from the stakeholders. For             
example, object-oriented analysis uses scenarios, or "use cases" to embody requirements.           
Safety-critical systems use more rigorous approaches, such as finite-state-machine models or           
formal specification languages.  

One fundamental decision with respect to the system being built is the extent to which it is a                  
variation on other systems that have been constructed. Since it is a rare system these days that                 
is not similar to other systems, requirements elicitation techniques extensively involve           
understanding these prior systems' characteristics.  

Another technique that helps us understand requirements is the creation of prototypes.            
Prototypes may help to model desired behavior, design the user interface, or analyze resource              
utilization. This helps to make the system "real" in the eyes of its stakeholders and can                
quickly catalyze decisions on the system's design and the design of its user interface. 

Regardless of the technique used to elicit the requirements, the desired qualities of the system               
to be constructed determine the shape of its architecture. Specific tactics have long been used               
by architects to achieve particular quality attributes. It is not until the architecture is created               
that some tradeoffs among requirements become apparent and force a decision on            
requirement priorities. 

3. Creating or Selecting the Architecture 

In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully and            
eloquently that conceptual integrity is the key to sound system design and that conceptual              
integrity can only be had by a small number of minds coming together to design the system's                 
architecture. 

4. Communicating the Architecture 



For the architecture to be effective as the backbone of the project's design, it must be                
communicated clearly and unambiguously to all of the stakeholders. Developers must           
understand the work assignments it requires of them, testers must understand the task             
structure it imposes on them, management must understand the scheduling implications it            
suggests, and so forth. Toward this end, the architecture's documentation should be            
informative, unambiguous, and readable by many people with varied backgrounds.. 

5. Analyzing or Evaluating the Architecture 

In any design process there will be multiple candidate designs considered. Some will be              
rejected immediately. Others will contend for primacy. Choosing among these competing           
designs in a rational way is one of the architect's greatest challenges.  

Evaluating an architecture for the qualities that it supports is essential to ensuring that the               
system constructed from that architecture satisfies its stakeholders' needs. Becoming more           
widespread are analysis techniques to evaluate the quality attributes that an architecture            
imparts to a system. Scenario-based techniques provide one of the most general and effective              
approaches for evaluating an architecture. 

6. Implementing Based on the Architecture 

This activity is concerned with keeping the developers faithful to the structures and             
interaction protocols constrained by the architecture. Having an explicit and          
well-communicated architecture is the first step toward ensuring architectural conformance.          
Having an environment or infrastructure that actively assists developers in creating and            
maintaining the architecture (as opposed to just the code) is better. 

7. Ensuring Conformance to an Architecture 

Finally, when an architecture is created and used, it goes into a maintenance phase. Constant               
vigilance is required to ensure that the actual architecture and its representation remain             
faithful to each other during this phase. Although work in this area is comparatively              
immature, there has been intense activity in recent years.  

___________________________________________________________________________ 

Question No 04:  (20) 

Pair programming is an agile software development technique in which two programmers            
work together at one workstation. One types in code while the other reviews each line of code                 
as it is typed in. The person typing is called the driver. The person reviewing the code is                  
called the observer. The two programmers switch roles frequently (possibly every 30 minutes             
or less).  

Suppose that you are asked to build a system that allows Remote Pair Programming. That is,                
the system should allow the driver and the observer to be in remote locations, but both can                 
view a single desktop in real-time. The driver should be able to edit code and the observer                 



should be able to “point” to objects on the driver’s desktop. In addition, there should be a                 
video chat facility to allow the programmers to communicate. The system should allow the              
programmers to easily swap roles and record rationale in the form of video chats. In addition,                
the driver should be able to issue the system to backup old work.  

● Draw a use case diagram to show all the functionality of the system.  
● Describe in detail four non-functional requirements for the system.  
● Give a prioritized list of design constraints for the system and justify your list and the                

ordering.  
● Propose a set of classes that could be used in your system and present them in a class                  

diagram 

ANSWER: 

● Draw a use case diagram to show all the functionality of the system.  
Answer: 
 

 
 

● Describe in detail four non-functional requirements for the system.  
Answer: 

1.  Ease of use - the front-end interface must be simple and easy to use. 
2.  Real-time performance - the Observer should be able to see the changes made by the 

Driver immediately without delay; the video chat should be smooth without delay. 
3. Availability - the system should be available to both programmers all the time. 
4.  Portability - the programmers should be able to use the system regardless of what 

computer and operating system used by the programmers. 



5. Security - the backup code should be kept securely and be protected from             
unauthorized access. 

6. Cost - users should not pay for this above 100$ per month as a membership. 
7. Reliability - the system should be reliable, i.e., it should not crash when the internet               

speed is slow and when the internet connection is suddenly down the user should be               
able to resume the session at a later time. 

● Give a prioritized list of design constraints for the system and justify your list              
and the ordering. 

Answer: 
Example 1:  
"the system should be portable" is a NFR. This NFR may lead to a constraint on the                 
programming language used for the implementation of the system (e.g., the programming            
language Java (rather than C and C++) might be preferred in order to meet this NFR). 
Example 2:  
"security - the system must be secured" is a NFR. The design constraints could be a user                 
authentication must be in place, the communication protocol must be encrypted, and/or the             
data must be stored on a server behind the firewall. 
 

● Propose a set of classes that could be used in your system and present them in a                 
class diagram 

Answer:  

 

___________________________________________________________________________ 


