ASSIGNMENT

Example 1

A construction company will replace an excavator after 5 years. A new one costs $\$ 250,000$. How much is the end-of-year annual uniform payment the company has to put into a bank in order to save enough money in five years' time for purchasing the equipment if the bank is offering an interest rate of 4% per annum?

Solution:

The problem can be presented diagrammatically as follows:

Fig. 3.2 - Sum of $\$ 250,000$ accumulated by 5 uniform periodic (annual) payments.

We have to bear in mind that the excavator always costs $\$ 250,000$, whether now or after five years, as the inflation-free assumption has been made.

Applying Equation 3.3, $250,000=A \times\left[\frac{(1+i)^{n}-1}{i}\right]=A \times 5.4163$
(5.4163 is found by substituting $i=0.04$ and $n=5$ into the formula, or from Appendix)

$$
\text { Hence, } A=\frac{250,000}{5.4163}=\$ 46,157
$$

Example 2: A construction material company makes and sells window panels. The selling price per panel is $\$ 900$. The variable cost for making the window panels is $\mathbf{\$ 5 0 0}$ per unit. The fixed cost is $\$ 8,000,000$. Find the BEP (break-even point).

Solution:

$p=$ selling price per unit $=\$ 900$
$v=$ variable cost per unit $=\$ 500$
$\mathrm{FC}=$ fixed cost $=\$ 8,000,000$

We can express our analysis in Table 6.1 as follows:

Volume	$x=18,000$	$x=20,000$	$x=22,000$
	$\$ 900 \times 18,000$ $=\$ 16,200,000$	$\$ 900 \times 20,000$ $=\$ 18,000,000$	$\$ 900 \times 22,000$ $=\$ 19,800,000$
VC (Variable Cost)	$\$ 500 \times 18,000$ $=\$ 9,000,000$	$\$ 500 \times 20,000$ $=\$ 10,000,000$	$\$ 500 \times 22,000$ $=\$ 11,000,000$
FC (Fixed Cost)	$\$ 8,000,000$	$\$ 8,000,000$	$\$ 8,000,000$
TC (Total Cost)	$\$ 17,000,000$	$\$ 18,000,000$	$\$ 19,000,000$
Net Income	$(\$ 800,000)$ Loss	0 BEP	$\$ 800,000$ Profit

Table 6.1 - Cost-volume-profit analysis (or Break-even analysis)

We can see that breaking-even occurs when the volume x is 20,000 units. If x is smaller than 20,000 units, the company will suffer a loss. If x is greater than 20,000 units, the company will have a profit. For example, if this company has a total (maximum) capacity of making 25,000 units of window panels in a year, then it will have a maximum profit of $\$ 2,000,000$. Verification of it is left to the readers. Since the break-even point is at 20,000 units, we say that the BEP is at 80% of the company's capacity (i.e. $20,000 / 25,000=80 \%$).

