

Iqra National University Name Irfan Ullah

ID# 16332

Class BS Software Engineering Section (B)

Subject Descrite Structure

Samester 2nd

Mid – Term Assignment

Submitted to Sir Muhammad Abrar Khan

Date /14th /Apr/2020

Q.1

- Which of the following are propositions?
- a) Buy Premium Bonds!
- b) The Apple Macintosh is a 16 bit computer.
- c) There is a largest even number.
- d) Why are we here?
- e) 8 + 7 = 13
- f) a + b = 13

Ans1

(a) is not a proposition. (It is a command, or imperative.)

(b) and

(c) are both propositions.

(d) is not a proposition; it's a question.

- (e) strictly speaking is a propositional function, but many people would say it is a proposition.
- (f) is not a proposition, because the result can be either true or false, it depends on the values of a & b.

Q.2

p is "x < 50"; q is "x > 40".

Write as simply as you can:

(a) $\neg p$ (b) $\neg q$ (c) $p \land q$ (d) $p \lor q$ (e) $\neg p \land q$ (f) $\neg p \land \neg q$

Ans2

(a) x ≥ 50
(b) x ≤ 40
(c) 40 < x < 50
(d) x < 50 or x > 40. This is true for all values of x.
(e) x ≥ 50 (Note that we don't need to say, in addition, that x > 40; this must be true whenever x ≥ 50.)
(f) x ≥ 50 and x ≤ 40. This can never be true, whatever the value of x.

So (d) is a tautology – it's always true; and (f) is always false.

Q.3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg p$? (There may be more than one correct answer.)

(a)

p is "Some people like Maths".

(a) "Some people dislike Maths"

(b) "Everybody dislikes Maths"

(c) "Everybody likes Maths"

b)

- p is "The answer is either 2 or 3".
- (a) "Neither 2 nor 3 is the answer"
- (b) "The answer is not 2 or it is not 3"
- (c) "The answer is not 2 and it is not 3"

c)

- p is "All people in my class are tall and thin".
- (a) "Someone in my class is short and fat"
- (b) "No-one in my class is tall and thin"
- (c) "Someone in my class is short or fat"

Ans3

(a) (b) (b) (a) and (c) (c) (c)

Q.4

Construct truth tables for:

- a) $\neg p \lor \neg q$
- b) $q \land (\neg p \lor q)$
- c) $p \land (q \lor r)$

 $(p \land q) \lor r$

Ans4

(a)

p	q	p	V	٦q
Т	Т	F	F	Т
Т	F	F	Т	F
F	F	Т	Т	F
F	F	Т	Т	Т
		(1)	(3) output	(2)

p	q	q ^	p	∨q
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	т	Т	Т
F	F	F	Т	Т
		(3) output	(1)	(2)

p	q	r	р л	$(q \lor r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	F
			(2) output	(1)

(d)

p	q	r	$(p \land q)$	v r
т	т	т	т	т
т	Т	F	т	т
т	F	Т	F	т
Т	F	F	F	F
F	Т	Т	F	т
F	Т	F	F	F
F	F	Т	F	Т
F	F	F	F	F
			(1)	(2) output

Q.5

Use truth tables to show that:

$$\neg ((p \lor \neg q) \lor (r \land (p \lor \neg q))) \equiv \neg p \land q$$

Ans5

In each case, the result is F, F, F, F, T, T, F, F

Q.6

Use the laws of logical propositions to prove that:

 $(z \land w) \lor (\neg z w) \lor (z \land \neg w) \equiv z \lor w$

State carefully which law you are using at each stage.

Ans6

$(Z \land W) \lor (\neg Z \land W) \lor (Z \land \neg W)$	$= (Z \land W) \lor (Z \land \neg W) \lor (\neg Z \land W)$	Commutative Law
	$= (Z \land (W \lor \neg W)) \lor (\neg Z \land W)$	Distributive Law
	$= (Z \land T) \lor (\neg Z \land W)$	Complement Law
	$= Z \lor (\neg Z \land W)$	Identity Law
	$= (Z \lor \neg Z) \land (Z \lor W)$	Distributive Law
	$= T \land (Z \lor W)$	Complement Law
	$= (z \lor w) \land T$	Commutative Law
	$= Z \vee W$	Identity Law