

Iqra National University
Name Irfan Ullah
ID\# 16332
Class BS Software Engineering Section (B)
Subject Descrite Structure
Samester $2^{\text {nd }}$
Mid -Term Assignment
Submitted to Sir Muhammad Abrar Khan
Date /14th /Apr/2020

Q. 1

Which of the following are propositions?
a) Buy Premium Bonds!
b) The Apple Macintosh is a 16 bit computer.
c) There is a largest even number.
d) Why are we here?
e) $8+7=13$
f) $a+b=13$

Ans1
(a) is not a proposition. (It is a command, or imperative.)
(b) and
(c) are both propositions.
(d) is not a proposition; it's a question.
(e) strictly speaking is a propositional function, but many people would say it is a proposition.
(f) is not a proposition, because the result can be either true or false, it depends on the values of $\mathrm{a} \& \mathrm{~b}$.

Q. 2

p is " $\mathrm{x}<50$ "; q is " $\mathrm{x}>40$ ".
Write as simply as you can:
(a) $\neg p$
(b) $\neg q$
(c) $\mathrm{p} \wedge \mathrm{q}$
(d) $p \vee q$
(e) $\neg p \wedge q$
(f) $\neg p \wedge \neg q$

Ans2
(a) $x \geq 50$
(b) $x \leq 40$
(c) $40<x<50$
(d) $x<50$ or $x>40$. This is true for all values of x.
(e) $x \geq 50$ (Note that we don't need to say, in addition, that $x>40$; this must be true whenever $x \geq 50$.)
(f) $x \geq 50$ and $x \leq 40$. This can never be true, whatever the value of x.

So (d) is a tautology - it's always true; and (f) is always false.

Q. 3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition \neg p? (There may be more than one correct answer.)
(a)
p is "Some people like Maths".
(a) "Some people dislike Maths"
(b) "Everybody dislikes Maths"
(c) "Everybody likes Maths"
b)
p is "The answer is either 2 or 3 ".
(a) "Neither 2 nor 3 is the answer"
(b) "The answer is not 2 or it is not 3 "
(c) "The answer is not 2 and it is not 3 "
c)
p is "All people in my class are tall and thin".
(a) "Someone in my class is short and fat"
(b) "No-one in my class is tall and thin"
(c) "Someone in my class is short or fat"

Ans3
(a) (b)
(b) (a) and (c)
(c) (c)

Q. 4

Construct truth tables for:
a) $\neg p \vee \neg q$
b) $q \wedge(\neg p \vee q)$
c) $p \wedge(q \vee r)$
$(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
Ans4
(a)

p	q	$\neg p$	\vee	$\neg q$
T	T	F	F	T
T	F	F	T	F
F	F	T	T	F
F	F	T	T	T
			(3) output	(2)

(b)

p	q	$q \wedge$	$\neg p$	$\vee q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	F	T	T
		(3) output	(1)	(2)

(c)

p	q	r	$p \wedge$	$(q \vee r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	F	T
F	T	F	F	T
F	F	T	F	T
F	F	F	F	F
			(2)	

(d)

p	q	r	$(p \wedge q)$	$\vee r$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	T
T	F	F	F	F
F	T	T	F	T
F	T	F	F	F
F	F	T	F	T
F	F	F	F	F
				(2)

Q. 5

Use truth tables to show that:
$\neg((\mathrm{p} \vee \neg \mathrm{q}) \vee(\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q}))) \equiv \neg \mathrm{p} \wedge \mathrm{q}$
Ans5
In each case, the result is F, F, F, F, T, T, F, F
Q. 6

Use the laws of logical propositions to prove that:
$(\mathrm{z} \wedge \mathrm{w}) \vee(\neg \mathrm{z}) \vee(\mathrm{z} \wedge \neg \mathrm{w}) \equiv \mathrm{z} \vee \mathrm{w}$
State carefully which law you are using at each stage.

Ans6

$$
\begin{array}{rlrl}
(z \wedge W) \vee(\neg z \wedge W) \vee(z \wedge \neg W) & =(z \wedge W) \vee(z \wedge \neg W) \vee(\neg z \wedge w) & \text { Commutative Law } \\
& =(z \wedge(W \vee \neg W)) \vee(\neg z \wedge W) & & \text { Distributive Law } \\
& =(z \wedge T) \vee(\neg z \wedge w) & & \text { Complement Law } \\
& =z \vee(\neg z \wedge W) & & \text { Identity Law } \\
& =(z \vee \neg z) \wedge(z \vee w) & & \text { Distributive Law } \\
& =T \wedge(z \vee W) & & \text { Complement Law } \\
& =(z \vee W) \wedge T & & \text { Commutative Law } \\
& =z \vee W & & \text { Identity Law }
\end{array}
$$

