
Yasir Ali Rasheed 
15268 

PhD (CS) 
Supervised Transformation Estimation in Deep 

Learning 
Sheeraz Ahmed 

Department of Computer Science 
Iqra National University,  

Peshawar, Pakistan.  
sheeraz.ahmad@inu.edu.pk 

Yasir Ali Rasheed 
Department of Computer Science, 

Iqra National University,  
Peshawar, Pakistan 

Yasirkhan2@hotmail.com

Sheeraz Ahmed 
Department of Computer Science 

Iqra National University,  
Peshawar, Pakistan.  

sheeraz.ahmad@inu.edu.pk 

Sheeraz Ahmed 
Department of Computer Science 

Iqra National University,  
Peshawar, Pakistan.  

sheeraz.ahmad@inu.edu.pk 

Sheeraz Ahmed 
Department of Computer Science 

Iqra National University,  
Peshawar, Pakistan.  

sheeraz.ahmad@inu.edu.pk 
 

Yasir Ali Rasheed 
Department of Computer Science, 

Iqra National University,  
Peshawar, Pakistan 

Yasirkhan2@hotmail.com  

Yasir Ali Rasheed 
Department of Computer Science, 

Iqra National University,  
Peshawar, Pakistan 

Yasirkhan2@hotmail.com 

Yasir Ali Rasheed 
Department of Computer Science, 

Iqra National University,  
Peshawar, Pakistan 

Yasirkhan2@hotmail.com 

Abstract: Establishing image correspondence through 
robust image registration is important for many medical 
tasks such as fusion of image, creation of organ atlas and 
monitoring of increasing tumor is a very difficult task. 
Since the start of the current Deep Learning (DL) 
renaissance, the medical imaging research community has 
developed DL-based approaches and achieved state-of-the-
art in many applications including image registration. The 
main scope of this survey is to provide a comprehensive 
review for the quick adoption of DL for image registration 
applications over the past few years in order highlight the 
challenges faced by the practitioners. This survey 
summarizes the past few years advancements in DL based 
medical image registration focusing on research challenges 
and relevant innovations. It also sheds light on the future 
research directions and identifies how to proceed further 
in this field. 

 
Keywords––Deep Learning (DL), diffeomorphic, unimodal, 
convolutional 
 

I. INTRODUCTION 
Image registration is the process of changing various image 
datasets into a single system having matching image contents 
having an important uses in medicine field. Registration is 
needed while analyzing images obtained from different 
viewports at different instances or different sensors. [1]. Image 
registration was done manually by clinicians till now, in which 
quality of manual alignments mostly depends upon the ability 
of user, which can be clinically harmful. In order to address 
the issues related to manual registration, automatic registration 
has been developed. Even though different techniques for 
automatic registration of image have been discovered prior to 
the DL renaissance, it DL reshaped image registration 
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research [2]. After the success of AlexNet in the ImageNet 
challenge of 2012 [3], DL has state-of-the-art performance in 
many computer vision tasks including: detection of object, 
extraction of features, segmentation, classification, denoising, 
and reconstruction of image [4].  
 

 
Figure 1: An overview of DL based medical image 

registration. 
 

Figure 1 shows different categories of various DL based 
registration methods while Figure 2 shows the growing 
interest in DL-based registration methods by the number of 
research publications in past few years. The trends in Figures 
1 and 2 shows that there is a lot of potential in this field and it 
is quickly removing the problems related to DL based medical 
image registration and many people have developed many 
successful applications [3, 5]. The red line in Figure 2 is a 
trend line for medical imaging based approach; blue line is the 
trend line for DL based medical image registration approach 
while dotted line is used for extrapolation. 
 

 
Figure 2: An overview of the number of DL based 
image registration and DL based medical imaging 

works. 
 

This article is a comprehensive survey of DL-based medical 
image registration, identify the challenges faced by the 
practitioners and discuss the directions of the future research to 
address these challenges. DL is a class of machine learning 
that uses neural networks with a large number of layers for 
representations of data [5]. It is important to understand 

different types of neural networks used for a many 
applications, various newly invented architectures to deal with 
engineering problems, and different strategies used to training 
the neural networks. For this purpose, this DL introduction is 
divided into three parts: Types of Neural Network, 
Architectures of Network and Training Paradigms & 
Strategies. It is notable that to build the networks described in 
this section, many publicly accessible libraries are available 
[6]. In depth discussion of DL based medical image analysis 
and a range of DL research directions is not the scope of this 
article. Comprehensive review articles that survey the 
application of DL to medical image analysis [7], reinforcement 
learning [8], and the application of GANs to medical image 
analysis [9] are recommended for interested readers.  

 
Table 1: Deep Iterative Registration Methods Overview. 
Ref Learning Transform Modality ROI Model 
[10] Metric Deformable CT Lung FCN 

[11] Metric Deformable CT/MR Head 5-Layer 
DNN 

[12] Metric Deformable CT Thorax 9-Layer 
CNN 

[13] Metric Rigid MR/US Prostate 
14-

Layer 
CNN 

[14] RL Agent Deformable MR Prostate 8-Layer 
CNN 

[15] RL Agent Rigid CT/ 
CBCT 

Spine/ 
Cardiac 

8-Layer 
CNN 

[16] RL Agent Rigid MR/CT Spine Dueling 
Network 

[17] Metric Rigid MR/US Fetal Brain LSTM/ 
STN 

[18] Multiple 
RL Agent Rigid X-ray/ 

CT Spine Dilated 
FCN 

[19] Metric Rigid MR/US Abdominal 5-Layer 
CNN 

[20] Metric Deformable MR Brain 5-Layer 
CNN 

[21] Metric Deformable MR Brain 2-Layer 
CAE 

 

 
Figure 3: A visualization of the registration pipeline in 

an intensity-based registration framework. 
 

II. DEEP ITERATIVE REGISTRATION 
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Automated intensity-based image registration requires a 
metric that balances the match between a moving and a static 
images and an optimization algorithm that updates the 
transformation parameters to maximize the match between 
these images. Prior to the DL renaissance, a number of 
manually crafted metrics were frequently used for such 
registration applications, including: sum of squared 
differences (SSD), cross-correlation (CC), mutual information 
(MI) [22], normalized cross correlation (NCC), and 
normalized mutual information (NMI). Initial applications of 
DL to medical image registration are direct extensions of the 
intensity-based registration framework [5, 23]. Later numerous 
groups used a reinforcement learning paradigm over and over 
again to estimate a transformation [1, 11, 22, 24] because this 
application is more relevant to how practitioners register.. 
 

2.1. Deep Similarity based Registration 
In this section, methods that use DL to learn a matching metric 
are studied. This similarity metric is inserted into a classical 
intensity-based registration framework with a specified 
interpolation strategy, transformation model, and optimization 
algorithm. This overall framework is conceptualized in Figure 
3. The solid lines represent flow of data which is needed 
during training and testing whereas dottedlines represent flow 
of data that are only needed during the training. Note that  
same is the case for the remainder of the figures in this article. 

 
Overview of Works Manually crafted similarity metrics 
performance was quite well in the unimodal registration 
case,DL has been used to learn superior metrics. In this 
section, first we will describe the methods that use DL to 
increase the performance of unimodal intensity based 
registration pipelines before multimodal registration. 

 
2.1.1.1. Unimodal Registration Authors in [23, 25] were 
the first to use DL in order to get an application-specific 
matching metric for registration. They extracted the features 
used for unimodal, deformable registration of 3D brain MR 
volumes using a Convolutional Stacked Autoencoder (CAE). 
Afterwards they have done the registration using gradient 
descent to enhance the NCC of the two sets of features which 
improved the registration techniques of diffeomorphic demons 
[26] and HAMMER [5]. 
In recent times, the researchers using end-to-end capacity [12], 
calculated registration error for the deformable registration of 
3D thoracic CT scans (inhale-exhale). They used a 3D CNN to 
estimate the error map for given inhale-exhale pairs of 
thoracic CT scans. As mentioned in aforesaid method, only 
known features were used for this task. 
Although the manually crafted descriptors performed better 
than the CNN-based descriptors, for lungs CT registration, 
paper [10] suggested to combinally use the CNN-based 
descriptors and manually crafted MRF-based self-similarity 

descriptors and best performance results were achieved. It is 
obvious that, in the unimodal registration case, DL may not 
outperform manually crafted methods while it can be used to 
get complementary information. 

2.1.1.2.  Multimodal Registration In multimodal case the 
benefits of the application of DL to intensity based 
registration are easier to understand, where manually crafted 
similarity metrics are rarely successful. 
Recently[11], a stacked denoising autoencoder has been used 
to learn matching metric that evaluates the quality of the strict 
alignment of CT and MR images. They demonstrated that 
their metric improved the NMI-optimization-based and local 
cross correlation (LCC)-optimization-based for their 
application. 
In an attempt to clearly visualize the image similarities in the 
multimodal case, authors [5] used a CNN to determine the 
difference between aligned 3D T1 and T2 weighted brain MR 
volumes. Given this matching metric, gradient descent was 
used in order to iteratively update the parameters that defines 
deformation field. This method has been successful in 
improving MI-optimization-based registration and paved the 
way for deep-intensity based multimodal registration. 
Additionally, researchers in [27] performed the rigid 
registration of 3D US/MR (modalities with an even greater 
appearance difference than MR/CT) abdominal scans by using 
a 5-layer neural network to learn a similarity metric that is then 
optimized by Powells method. This approach also improved 
MI-optimization-based registration. Researchers [13] learned a 
similarity metric for multimodal rigid registration of MR and 
transrectal US (TRUS) volumes by using a CNN to predict 
target registration error (TRE). Instead of using aforementioned 
methods, they used an evolutionary algorithm to explore the 
solution space prior to using a traditional optimization 
algorithm because of the learned metric’s lack of convexity. 
This registration framework outperformed MIND-optimization-
based [23] and MI-optimization-based registration. In contrast 
to the above methods, authors [22] used LSTM spatial co-
transformer networks to iteratively register MR and US 
volumes group-wise. The recurrent spatial co-transformation 
took place in three phases: image warping, residual parameter 
prediction, parameter composition. Previous multimodal image 
similarity quantification method used self-similarity context 
descriptors therefore this method  understands the image 
similarities better than previous one.  [25]. 

2.1.1. Discussion and Assessment 
Recently it is revealed that in multimodal medical image 
registration, the neural networks have ability to assess the 
similarities of image.. According to the results obtained from 
the methods mentioned in this section, DL can be successfully 
applied to challenging registration tasks. Furthermore for real 
time registration these iterative techniques are difficult to use. 
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III. Supervised Transformation Estimation 
Although the previously described approaches were initially 
successful but as the transformation estimation in these 
methods was repetitive thus slowing down the registration 
[13]. T h i s  i s  e s p e c i a l l y  t r u e  i n  c a s e s  o f  deformable 
r e g i s t r a t i o n  wh e r e  t h e  s o l u t i o n  s p a c e  i s  mo r e  
d i me n s i o n a l .  [7]. This helped in the development of 
networks that can predict the transformation that corresponds 
to maximum matching in one step. However, fully supervised 
transformation estimation (exclusively  using ground truth 
data to describe the loss function) has many problems that are 
discussed in this section. A visualization of supervised 
transformation estimation is given in Figure 5 and a 
description of notable works is given in Table 2. 

 
3.1 Fully Supervised Transformation Estimation 
In this section, the survey of the methods that use full 
supervision for single-step registration is performed. The use 
of neural network to perform registration as opposed to an 
iterative optimizer significantly speeds up the registration 
process. 
 
3.1.1 Overview of works 
Many registration applications involve deformable 
transformation models that normally not allow the usage of 
traditional convolutional neural networks due to computational 
expense linked with using FC-layers to make predictions in 
highly dimensional solution spaces [1]. The networks that are 
used to predict deformation fields are fully convolutional, the 
dimensionality of the solution space associated with a 
deformation field does not introduce additional computational 
constraints [4]. 

 
3.1.1.1 Rigid Registration Authors in [28] were the first to 
use DL to calculate rigid transformation parameters. They 
used a CNN to calculate the transformation matrix linked with 
the rigid registration of 2D/3D X-ray attenuation maps and 2D 
X-ray images. Hierarchical regression is adopted in which 6 
transformation parameters are divided into 3 groups. In this 
approach, by changing the associated data, ground truth data 
was synthesized. Same is the case for the next three 
approaches described here. As compared to MI, CC, and 
gradient correlation (GC)-optimization-based registration 
approaches, this approach performed well in terms of both 
accuracy and computational efficiency. Better computational 
efficiency is obtained with the use of a forward pass through a 
neural network instead of an optimization algorithm to 
perform the registration. 
The researchers [1] used a CNN to calculate the 
transformation parameters used to rigidly register 3D brain 
MR volumes. To train the network in this framework, affine 
image registration network (AIRNet), the MSE between the 
predicted and ground truth affine transforms were used and 

results showed that this was better than MI-optimization-based 
registration for both the unimodal and multimodal cases. 
For atlas construction, the authors [27] used a deep residual 
regression network, a correction network and a bivariant 
geodesic distance based loss function to rigidly register T1 
and T2 weighted 3D fetal brain MRs. The residual network is 
used to initially register the image volumes before forward 
pass through the correction network allowed for an 
enhancement of the capture range of the registration. This 
method was used for slice-to-volume and volume-to-volume 
registration methods. They authenticate the efficacy of their 
geodesic loss term and outperformed NCC-optimization-based 
registration. 
Furthermore, researchers [26] proposed the integration of a 
Pair-wise Domain Adaptation module (PDA) into a pre-
trained CNN that performs the rigid registration of pre-
operative 3D X-Ray images and intra-operative 2D X-ray 
images using a limited amount of training data. Domain 
adaptation was used to address the inconsistency between 
synthetic data that was used to train the deep model and real 
data. 
Researchers [29] used a CNN to revert the rigid 
transformation parameters for the registration of T1 and T2 
weighted brain MRs. In this work both unimodal and 
multimodal registration were examined . The parameters that 
makeup the convolutional layers and were used to take out 
low-level features in all images were only shared in the 
unimodal case. These parameters were gathered separately in 
the multimodal case which outperformed MI-optimization-
based image registration. 

 
3.1.1.2 Deformable Registration In contrast to previous 
section, methods that use both real and synthesized ground 
truth labels will be discussed here. First we will discuss the 
methods that use clinical and publicly available ground truth 
labels for training. This order reflects the fact that simulation 
of realistic deformable transformations is more difficult than 
realistic rigid transformations. 
This approach uses a  U-net like architecture [12] along with a 
large diffeomorphic metric mapping to provide a basis, used 
the initial momentum values of the pixels of the image 
volumes as the network input, and evolved these values to 
obtain the predicted deformation field. This approach is better 
than the semi-coupled dictionary learning based registration 
[8]. 
The next year researchers [6] used a U-net [12] network to 
calculate the deformation field used to register 3D cardiac MR 
volumes. Mesh segmentations are used to calculate the 
reference transformation for a given pair of image and SSD 
between the prediction, also for loss function, ground truth is 
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used . This method is better than LCC Demons based 
registration [30]. 
In same year, a CNN was used by authors [9] for mapping parts 
of input image a pair of 3D brain MR volumes to their 
respective displacement vector. To perform the registration, 
the total displacement vectors for a given image constitutes the 
deformation field. Furthermore, they used the similarities 
between input image patches to guide the learning process. 
They also used equalized active-points guided sampling 
strategy that makes them more likely to sample patches with 
higher gradient magnitudes and displacement values are more 
likely to be used for training and the results were better than 
SyN [31] and Demons [26] based registration methods. 
Recently, authors [30] used a CNN to carry out the 
deformable registration of abdominal MR images to 
compensate for respiratory defects. This approach achieved 
registration results that are better than using non-motion 
optimized registrations and locally attached registrations. The 
researchers [25] justified the uncertainty associated with poor 
registration of 3D T1 and T2 weighted brain MRs using a low-
rank Hessian estimation of the variable gaussian distribution 
of the transformation parameters. Real as well as synthetic 
data was used to evaluate this method.. 
Just as DL practitioners use random changes to increase the 
diversity of their dataset, paper [29] used random DVFs to 
expand their dataset. To predict a deformation field, a multi-
scale CNN is used. This deformation is used for intra-subject 
registration of 3D chest CT images. This method used late 
fusion rather than early fusion, in which the patches are 
patched and used as the input to the network. The performance 
of this  method is equal to B-Spline based registration [29]. 
Such an approach has significant, but limited ability to 
increase the size and range of datasets and these were the 
limitations that encouraged the development of more 
sophisticated ground truth generation. The other approaches 
explained in this section use simulated ground truth data for 
their applications. 
Researchers [6] used a 3D CNN to perform the deformable 
registration of inhale-exhale 3D lung CT image volumes. A 
series of multi-scale, random transformations of aligned image 
pairs eliminate the need for manually annotated ground truth 
data while also maintaining realistic image appearance. In 
contrast with other methods, CNN can be trained using few 
medical images in a supervised capacity. 
Contrary to the above the above researchers [13] generated 
ground truth data using Statistical Appearance Models 
(SAMs). They used a CNN to estimate the deformation field 
for the registration of 2D brain MRs and 2D cardiac MRs, and 
adapt FlowNet [24] for their application. It is proved that 
training FlowNet using SAM generated ground truth data, the 

performance results are better than CNNs trained using either 
randomly generated ground truth data or ground truth data 
obtained using the registration method described in [28]. 
In contrary to other methods in this section that generate 
ground truth data by using random transformations or 
manually crafted methods, the authors [31] used a CNN to 
learn plausible deformations for ground truth data generation. 
They assessed their approach on the 3D brain MR volumes in 
the ADNI dataset and results were better than the MI-
optimization-based approach proposed in [2]. 

 
3.1.2 Discussion and Assessment 
Supervised transformation estimation has allowed for real 
time, robust registration across applications with few 
limitations. The quality of the registrations using this 
framework depends on the quality of the ground truth 
registrations. Of course the quality of these labels depends on 
the skill of the practitioner. Since there are very few persons 
with expertise necessary to perform such registrations 
therefore, these labels are quite difficult to obtain. These 
limitations can be addressed by transformations of training 
data and the generation of synthetic ground truth data. Here it 
is necessary to make sure that the simulated data is abundantly 
similar to clinical data. 

 

Figure 4: A visualization of deep single step registration. 

 

3.2 Dual/Weakly Supervised Transformation 
Estimation 

Dual supervision refers to the use of both ground truth data 
and some metric that quantifies image similarity to train a 
model. Alternatively, weak supervision refers to using the 
overlap of segmentations of corresponding anatomical 
structures to design the loss function. 

 
3.2.1 Overview of works 
Researchers [27] used hierarchical, dual-supervised learning 
to forecast the deformation field for 3D brain MR registration. 
They modify the traditional-Net architecture [12] t h r o u g h  
“gap-filling” (i.e., inserting convolutional layers after the U-
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type ends) and coarse-to-fine guidance. This approach took 
advantage of the similarities between predictive and ground 
truth changes and warped and fixed images to train the 
network.. The architecture used in this method improved the 
U-Net architecture and the dual supervision strategy is verified 
by removing the image similarity loss function term. A 
visualization of dual supervised transformation estimation is 
given in Figure 4. 
Alternatively, in paper [25] a framework is used that was 
inspired by the GAN [29] to perform the rigid registration of 
3D MR and TRUS volumes. Here the generator was trained to 
estimate a rigid transformation. However, the discriminator 
was trained to differentiate between images that were aligned 
using both ground truth transformations and the predicted 
transformations. In this method, both Euclidean distance to 
ground truth and an adversarial loss term are used to construct 
the loss function. Adversarial transformation estimation is 
given in Figure 5. 

 

Figure 5: A visualization of an adversarial image 
registration framework. 

 
Contrary to above methods that used dual supervision, authors 
[3, 32] in recent times used label similarity to train their 
network in order to perform MR-TRUS registration. Initially 
they used two neural networks: local-net and global-net to 
estimate the global affine transformation with 12 degrees of 
freedom and the local dense deformation field respectively 
[32]. The local-net uses the concatenation of the 
transformation of the moving image given by the global-net 
and the fixed image as its input. But later on [3], they 
combined these networks into end-to-end framework and thus 
outperformed NMI-optimization-based and NCC based 
registration. Figure 6 shows the weakly supervised 
transformation estimation. In another work researchers [33] 
simultaneously maximized label similarity and minimized an 
adversarial loss term to predict the deformation for MR-TRUS 
registration. This term of regularity forces the predicted 
transformation which resulted in the generation of a realistic 
image. Using the adversarial loss as a regularization term is 

likely to successfully force the transformation to be realistic 
given proper hyper parameter selection. The performance of 
this registration framework was less as compared to the 
performance of their aforementioned previous registration 
framework. However, they showed that adversarial 
regularization is better than standard bending energy based 
regularization. Similarly authors [4] built upon the progress 
made regarding both dual and weak supervision by introducing 
a label and similarity metric based loss function for cardiac 
motion tracking via the deformable registration of 2D cine-MR 
images. Both segmentation overlap and edge based normalized 
gradient fields distances were used to construct the loss 
function in this approach. Their method outperformed a 
multilevel registration approach similar to the one proposed in 
[27]. 

 

3.2.2 Discussion and Assessment 
Direct transformation estimation marked a major breakthrough 
for DL based image registration. With full monitoring, 
encouraging results have been obtained. At the same time, 
however, these techniques require a large number of detailed 
illustrated images for training.. Partially/weakly supervised 
transformation estimation methods reduced the limitations 
associated with the trustworthiness and expense of ground 
truth labels  but still require manually annotated data (e.g. 
ground truth and / or segmentations). In the multimodal case, 
the weak supervision allows for similarity quantification. In 
addition, partial supervision allows for the aggregation of 
methods that can be used to assess the quality of a predicted 
registration. It is a growing research field. 

 
 

Figure 6: A visualization of deep single step 
registration where the agent is trained using label 

similarity. 

 

IV. Research Trends and Future Directions 
Figure 2 shows some emerging research trends.. It seems that 
DL-based medical image registration follows the observed 
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trend of general application of DL to medical image analysis. 
Secondly, unsupervised transformation estimation methods 
have recently been given more attention by the research 
community. Also DL based methods are performing better 
than traditional optimization based techniques [6]. On the basis 
of observed research trends, it is hypothesized that the 
following research directions will receive more attention by 
the researchers. 

 
4.1 Deep Adversarial Image Registration 
We further speculate that GANs will be used more frequently 
in DL based image registration in the next few years. As 
described above, GANs can serve several different purposes in 
DL based medical image registration: using a discriminator as 
a learned similarity metric, ensuring that predicted 
transformations are realistic, and using a GAN to perform 
image translation to transform a multimodal registration 
problem into a unimodal registration problem. 
GAN-like frameworks have been used in several works to 
directly train transformation predicting neural network. 
Several recent works [3, 25] use a discriminator to discern 
between aligned and misaligned image pairs. Although the 
training paradigm borrows from an unsupervised training 
strategy, the discriminator requires pre-aligned image pairs. 
Therefore, it will have limited success in multimodal or 
challenging unimodal applications where it is difficult to 
register images. Because discriminators are trained to assign 
all misaligned image pairs the same label, they will likely be 
unable to model a spectrum of misalignments. Despite this 
limitation, the application of GANs to medical image 
registration are still quite promising and will be described 
below. 
Unconstrained deformation field prediction can result in 
warped moving images with unrealistic organ appearances. A 
common approach is to add the L2 norm of the predicted 
deformation field, its gradient, or its Laplacian to the loss 
function. However, the use of such regularization terms may 
limit the magnitude of the deformations that neural networks 
are able to predict, so authors [33] explored the use of a GAN-
like framework to produce realistic deformations. 
Constraining the deformation prediction using a discriminator 
results in superior performance relative to the use of L2 norm 
regularization in that work. 
Lastly, GANs can be used to map medical images in a source 
domain (e.g. MR) to a target domain (e.g. CT) [27, 30], 
regardless of whether or not paired training data is available 
[30]. This image appearance reduction technique would be 
advantageous because many unimodal unsupervised 
registration methods use similarity metrics that often fail in the 
multimodal case. If image translation is performed as a pre-

processing step, then commonly used similarity metrics could 
be used to define the loss function of transformation predicting 
networks. 

 
4.2 Raw Imaging Domain Registration 
This article has focused on surveying methods performing 
registration using reconstructed images. However, we 
speculate that it is possible to incorporate reconstruction into 
an end-to-end DL based registration pipeline. In 2016, Wang 
[26] postulated that deep neural networks could be used to 
perform image reconstruction. Further, several works [4] 
recently demonstrated the ability of DL to map data points in 
the raw data domain to the reconstructed image domain. 
Therefore, it is reasonable to expect that registration pipelines 
that take raw data as input and output registered, reconstructed 
images can be developed within the next few years. 

 

Figure 7: A visualization of supervised single step 
registration. 

 

V. Conclusion 
In this article, the recent works that use DL to perform medical 
image registration have been examined. As each application 
has its own unique challenges, the creation of the DL based 
frameworks must be carefully designed. Many DL based 
medical image registration applications share similar 
challenges including the lack of a robust similarity metric for 
multimodal applications, in which there are significant image 
appearance differences and/or different fields of view (e.g. 
MR-TRUS registration) [13], the lack of availability of large 
datasets, the challenge associated with obtaining 
segmentations and ground truth registrations, and quantifying 
the uncertainty of a model’s prediction. Furthermore, despite 
the sophistication of many of the methods discussed in this 
survey, resampling and interpolation are often not among the 
components of registration that are learned by the neural 
network. Recent successes have demonstrated the impact of 
the application of DL to medical image registration. This trend 
can be observed across medical imaging applications. Many 

7 | P a g e  



future exciting works are sure to build on the recent progress 
that has been outlined in this paper. 

Table 2: Supervised Transformation Estimation 
Methods. Gray rows use Diffeomorphisms. 

Ref Supervision Transform Modality ROI Model 

[9] Real  
Transforms 

Deformable MR Brain 9-layer CNN 

[1] Synthetic 
Transforms Rigid MR Brain AIRNet 

[6] Synthetic 
Transforms 

Deformable CT Lung U-Net 

[27] Real Transforms + 
Similarity Metric Deformable MR Brain U-Net 

[4] Segmentations + 
Similarity Metric Deformable MR/US Prostate U-Net GAN 

[34] Segmentations + 
Adversarial Loss Deformable MR/US Prostate GAN 

[35] Segmentations Deformable MR/US Prostate 30-layer FCN 

[36] Synthetic 
Transforms Deformable MR Brain GoogleNet 

[37] Real 
Transforms Deformable MR Abdominal CNN 

[38] Synthetic 
Transforms Rigid X-ray/ DDR Bone 6-layer CNN 

[39] Real 
Transforms 

Deformable MR Cardiac SVF-Net 

[40] Synthetic 
Transforms Rigid MR Brain 11-layer CNN 

ResNet-18 

[41] Synthetic 
Transforms Rigid MR Brain 6-layer CNN 

10-layer FCN 

[42] Synthetic 
Transforms 

Deformable CT Chest RegNet 

[43] Synthetic 
Transforms 

Deformable CT/US Liver DVFNet 

[44] Synthetic 
Transforms Deformable MR Brain/ 

Cardiac FlowNet 

 
[45] 

Synthetic 
Transforms + 

Adversarial Loss 
Rigid MR/US Prostate GAN 

[46] Real + Synthetic 
Transforms Deformable MR Brain FCN 

[47] Real Transforms Deformable MR Brain FCN 

[48] Synthetic Transforms Rigid X-ray Bone 17-layer CNN 
PDA Module 
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