Department of Electrical Engineering Assignment Date: 24/06/2020

Course Details

Course Title: Instructor:		Electric Power Transmission	Module:	4rth	
		ENGR. AMIR AAMAN	Total Marks:	50	
		<u>Student De</u>	etails_		
Name	:	AZHAD NIAZ	Student ID: <u>15</u>	5493	
01	A singl	e phase line has two parallel con	nductors 2 meters apart. The	Marks 10	
	diamete	er of each conductor is 1.2 cm.	I I I I I I I I I I I I I I I I I I I	CLO 1	
	Calcula	te the loop inductance per km o	of the line.		
Q2	A sing	le phase transmission line has	two parallel conductors 3 m	Marks 10	
	apart, t	he radius of each conductor be	ing 1 cm. Calculate the loop	CLO 1	
	inducta	nce per km length of the line if	the material of the conductor		
	is				
	(i)	Copper			
	(ii)	Steel with relative permeabili	ity of 100.		
Q3	A long	transmission lines more than 2	40kms are consisting of high	Marks 10	
	amount	of capacitance and inductance	e distributed across the entire	CLO 1	
	length	of the line. Ferranti effect occur	rs when current drawn by the		
	distribu	ited capacitance of the line itse	elf is greater than the current		
	associa	ted with the load at the receivin	g end of the line (during light		
	or no l	oad). Why Ferranti effect occu	rs in long transmission line?		
	Back y	our answer with valid data, facts	s and figures.		
Q4	A 3-ph	hase load of 2000 kVA, 0.8 p.f.	is supplied at 6.6 kV, 50 Hz	Marks 10	
	by mea	ins of a 33 kV transmission lin	e 20 km long and 33/6·6 kV	CLO 2	
	step-do	wn transformer. The resistar	nce and reactance of each		
	conduc	tor are 0.4Ω and 0.5Ω per km	n respectively. The resistance		
	and rea	ctance of transformer primary	are 7.5 Ω and 13.2 Ω , while		
	those of	f secondary are $0.35 \ \Omega$ and 0.65	Ω respectively.		
	Find th	e voltage necessary at the send	ling end of transmission line		
	when 6	.6 kV is maintained at the receiv	ving end.		
	Determ	ine also the sending end pow	wer factor and transmission		
	efficien	юу.			
Q5	A 132 I	V line with 1.956 cm dia. cond	uctors is built so that corona	Marks 10	

takes place if the line voltage exceeds 210 kV (r.m.s.). If the value	CLO 2
of potential gradient at which ionization occurs can be taken as 30	
kV per cm, find the spacing between the conductors.	

Name: AZHAD NIAZ Student ID: 15493	
------------------------------------	--

Q1: A single phase line has two parallel conductors 2 meters apart. The diameter of each conductor is 1.2 cm.

Calculate the loop inductance per km of the line.

Solution Given data:

Spacing of conductors, d = 2 m = 200 cm

Radius of conductor,
$$r = \frac{1.2}{2} = 0.6$$
 cm

Loop inductance per meter length of the line= $10^{-7} (\frac{1+4 \text{ logged}}{r}) \text{ H}$

$$= 10^{-7} \left(\frac{1+4 \log 200}{0.6}\right) \mathbf{H} = 24 \cdot 23 \times 10^{-7} \mathbf{H}$$

Loop inductance per km of the line = $24 \cdot 23 \times 10^{-7} \times 1000$ H

$$= 24.23 \times 10^{-4} H = 2.423 mH$$

Ans.

Q2: A single phase transmission line has two parallel conductors 3 m apart, the radius of each conductor being 1 cm. Calculate the loop inductance per km length of the line if the material of the conductor is

(i) Copper

Steel with relative permeability of 100

Name:	AZHAD NIAZ	Student ID:	15493

ANS2:

Solution:

given data

Spacing of conductors, d = 300 cm

Radius of conductor, r = 1 cm

Loop inductance = $10^{-7} (\frac{\mu r + 4 \log d}{r}) H/m$

: Loop inductance/m =
$$10^{-7}$$

$$(\frac{1+4 \log e d}{r}) H = 10^{-7}$$

$$(\frac{1+4 \text{ loge } 300}{1}) \text{ H} = 23.8 \times 10^{-7}$$

Loop inductance/km = $23 \cdot 8 \times 10^{-7}$

 $\times 1000 = 2.38 \times 10^{-3} \text{ H} = 2.38 \text{ mH}$

Name:	AZHAD NIAZ	Student ID:	15493

With steel conductors, $\mu r = 100$

: Loop inductance/m =
$$10^{-7}$$

$$\left(\frac{100 + 4 \log 300}{1}\right)$$
 H = 122·8 × 10⁻⁷ H

Loop inductance/km = $122 \cdot 8 \times 10^{-7} \times 1000$

 $= 12.28 \times 10^{-3}$ H

= 12·28 mH

Q3:

A long transmission lines more than 240kms are consisting of high amount of capacitance and inductance distributed across the entire length of the line. Ferranti effect occurs when current drawn by the distributed capacitance of the line itself is greater than the current associated with the load at the receiving end of the line (during light

or no load). Why Ferranti effect occurs in long transmission line? Back your answer with valid data, facts and figures

Name:	AZHAD NIAZ	Student ID:	15493

ANS:

A long transmission lines more than 240kms are consisting of high amount of capacitance and inductance distributed across the entire length of the line. Ferranti effect occurs when current drawn by the distributed capacitance of the line itself is greater than the current associated with the load at the receiving end of the line (during light or no load) This capacitor charging current leads to a voltage drops across the line inductor of transmission system which is in phase with sending end voltages this voltage drop keeps on increasing additionally as e move toward the load end of the line and subsequently the receiving end voltage tend to get larger than applied voltage leading to the phenomena called Ferranti effect.

During no load or light load condition, the reactive power generated at a point on the Transmission Line will be more than the reactive power absorbed and therefore the voltage at that point will rise. Mind that during no load or light load condition the line capacitance will dominate to inductance.

The Ferranti Effect occurs when current drawn by the distributed capacitance of the transmission line itself is greater than the current associated with the load at the receiving end of the line. Therefore, the Ferranti effect tends to be a bigger problem on lightly loaded lines and especially on underground cable circuits where the shunt capacitance is greater than with a corresponding overhead line. This effect is due to the voltage drop across the line inductance (due to charging current) being in phase with the sending end voltages. As this voltage drop affects the sending end voltage, the receiving end voltage becomes greater. The Ferranti Effect will be more pronounced the longer the line and the higher the voltage applied.

The Ferranti Effect is not a problem with lines that are loaded because line capacitive effect is constant independent of load, while inductance will vary with load. As inductive load is added, the VAR generated by the line capacitance is consumed by the load.

Name:	AZHAD NIAZ	Student ID:	15493

- VR = receiving end voltage
- VS = sending end voltage
- IL = Line current
- Is = current at sending end
- Ir = receiving end current
- Ic1 = line capacitive current at sending end
- Ic2 = line capacitive current at receiving end
- Z = line impedance
- R = line resistance
- L = inductance of transmission line
- C = capacitance of line
- Y = conductance of line
- L = length of conductor
- XL = inductive reactants of conductor

		Student Details		
Name:	AZHAD NIAZ	-	Student ID:	15493

Ctudant Dataila

Q:A 3-phase load of 2000 kVA, 0.8 p.f. is supplied at 6.6 kV, 50 Hz by means of a 33 kV transmission line 20 km long and 33/6.6 kV step-down transformer. The resistance and reactance of each conductor are 0.4 Ω and 0.5 Ω per km respectively. The resistance and reactance of transformer primary are 7.5 Ω and 13.2 Ω , while those of secondary are 0.35 Ω and 0.65 Ω respectively. Find the voltage necessary at the sending end of transmission line when 6.6 kV is maintained at the receiving end. Determine also the sending end power factor and transmission efficiency

Solution:

The single diagram of the transmission system. Here, the voltage drop will be due to the impedance of transmission line and also due to the impedance of transformer.

Resistance of each conductor = $20 \ge 0.04 = 8\Omega$

Reactance of each conductor = $20 \ge 0.5 = 10\Omega$

Let us transfer the impedance of transformer secondary to high tension side i.e., 33 kV side.

Equivalent resistance of transformer referred to 33 kV side

= Primary resistance + 0.35 (33/6.6)2

$$= 7.5 + 815 = 16.25\Omega$$

Equivalent reactance of transformer referred to 33 kV side

= Primary reactance + 0.65 (33/6.6)2

 $=13-2+16-25=29-45\Omega$

Name:	AZHAD NIAZ	Student ID:	15493

Total resistance of line and transformer is

R = 8 + 16.25 = 24.25Q

Total reactance of line and transformer is

 $x_L = 10 + 29.45 = 39.45\Omega$

Receiving end voltage per phase is

 $v_R = 33,000/\sqrt{3} = 19052 \text{ V}$

Line current

$$I = \frac{2000 \times 10^3}{\sqrt{3} \times 33000} = 35 \text{ A}$$

Name:	AZHAD NAIZ	Student ID:	<u>15493</u>

Using the approximate expression for sending end voltage v_s per phase.

$$v_{s} = v_{R} + IR \cos \phi_{R} + Ix_{L} \sin \phi_{R}$$

= 19052 + 35 x 24-25 x 0-8 + 35 x 39-45 x 0-6
= 19052 + 679 + 828 = 20559 V = 20-559 kV = 45
Sending end line voltage = $\sqrt{3} \times 20.559 \text{ kV} = 35.6 \text{ Kv}$
Sending end p.f.. $\cos \phi_{s} = \frac{v_{R} \cos \phi_{R} + IR}{v_{s}} = \frac{19052 \times 0.8 + 35 \times 24.25}{1000} = 89.12 \text{ Kw}$
 $= \frac{3I^{2}R}{1000} \text{ kW} = \frac{3 \times (35^{2}) \times 24.25}{1000} = 89.12 \text{ Kw}$
= 2000Kva × 0.8 = 1600Kw

Transmission efficiency

$$=\frac{1600}{1600+89.12}$$
 ×100=94.75 %

Name:	AZHAD NIAZ	Student ID:	15493

Q5:

A 132 kV line with 1.956 cm dia. conductors is built so that corona takes place if the line voltage exceeds 210 kV (r.m.s.). If the value of potential gradient at which ionization occurs can be taken as 30 kV per cm, find the spacing between the conductors.

SOLUTION:

$$r\frac{1.956}{2} = 0.978cm$$

$$E_0 = \frac{30}{\sqrt{3}} = 21.2(r.m.s)$$

 $m_0 = 1$ (smooth conductor)

 $\delta = 1$ (stander pressure and temperature

 $V_o = 21.1 m_o \delta r \ln \frac{d}{r}$

Disruptive voltage/phase = $\frac{210}{\sqrt{3}}$ = 121.25Kv

 $\therefore 121.25 = 21.1 \times 1 \times 1 \times 1.978 \times 1n\frac{d}{r}$

 $1n\frac{d}{r} = 5.84$