

Subject:Data Sciences
Time: 9 Am to 12:00 Am
BS (CS,SE)
Name: Changaiz khan

ID: 13206 Instructor: M.Ayub Khan

Q1. a. What are variables in python explain with help of Python coded
examples?

Answer:

 Python variable is a reserved memory location to store values. In other words, a variable
in a python program gives data to the computer for processing.

Every value in Python has a datatype. Different data types in Python are Numbers, List,
Tuple, Strings, Dictionary, etc. Variables can be declared by any name or even alphabets
like a, aa, abc, etc.

Python Example
Declare a variable and initialize it
f = 0
print f
re-declaring the variable works
f = 'guru99'
print f

Python Example
Declare a variable and initialize it
f = 0
print(f)
re-declaring the variable works
f = 'guru99'
print(f)

 Q1b. What are the rules to define a variable in python?

Answer:

Department of Computer Science
Final Exam Summer 2020

 Creating Variables
Variables are containers for storing data values.

Unlike other programming languages, Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example
x = 5
y = "John"
print(x)
print(y)

Variable Names
A variable can have a short name (like x and y) or a more descriptive name (age, carname,
total_volume). Rules for Python variables:

• A variable name must start with a letter or the underscore character
• A variable name cannot start with a number
• A variable name can only contain alpha-numeric characters and underscores (A-z,

0-9, and _)
• Variable names are case-sensitive (age, Age and AGE are three different variables)

Example
#Legal variable names:
myvar = "John"
my_var = "John"
_my_var = "John"
myVar = "John"
MYVAR = "John"
myvar2 = "John"

#Illegal variable names:
2myvar = "John"
my-var = "John"
my var = "John"

Assign Value to Multiple Variables
Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange", "Banana", "Cherry"
print(x)
print(y)
print(z)

Output Variables
The Python print statement is often used to output variables.

To combine both text and a variable, Python uses the + character:

Example
x = "awesome"
print("Python is " + x)

Q2. a. What are data types, how many data types are used in python
explain with
 the help of Python coded examples ?

Answer:

Data Types
In programming, data type is an important concept.

Variables can store data of different types, and different types can do different things.

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Getting the Data Type
You can get the data type of any object by using the type() function:

Example
Print the data type of the variable x:

x = 5
print(type(x))

Setting the Data Type
In Python, the data type is set when you assign a value to a variable:

x = "Hello World" str

x = 20 int

x = 20.5 float

x = 1j complex

x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple", "banana", "cherry"}) frozenset

x = True bool

x = b"Hello" bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5))

Setting the Specific Data Type
If you want to specify the data type, you can use the following constructor functions:

Example Data Type

x = str("Hello World") str

x = int(20) int

x = float(20.5) float

x = complex(1j) complex

x = list(("apple", "banana", "cherry")) list

x = tuple(("apple", "banana", "cherry")) tuple

x = range(6) range

x = dict(name="John", age=36) dict

x = set(("apple", "banana", "cherry")) set

x = frozenset(("apple", "banana", "cherry")) frozenset

x = bool(5) bool

x = bytes(5) bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5))

Q2b. Write a program in python in which integer value is changed in to
string data type as well as explain in detail.

Answer:

 To convert an integer to string in Python, use the str() function. This function takes any
data type and converts it into a string, including integers. Use the
syntax print(str(INT)) to return the int as a str, or string.

Converting int to Strings
We can convert numbers to strings through using the str() method. We’ll pass either a
number or a variable into the parentheses of the method and then that numeric value
will be converted into a string value.

Let’s first look at converting integers. To convert the integer 12 to a string value, you can
pass 12into the str() method:

str(12)
Copy

When running str(12) in the Python interactive shell with the python command in a
terminal window, you’ll receive the following output:

Output
'12'
The quotes around the number 12 signify that the number is no longer an integer but is
now a string value.

With variables we can begin to see how practical it can be to convert integers to strings.
Let’s say we want to keep track of a user’s daily programming progress and are
inputting how many lines of code they write at a time. We would like to show this
feedback to the user and will be printing out string and integer values at the same time:

user = "Sammy"

lines = 50

print("Congratulations, " + user + "! You just wrote " + lines + " lines of code.")
Copy
When we run this code, we receive the following error:

Output
TypeError: Can't convert 'int' object to str implicitly
We’re not able to concatenate strings and integers in Python, so we’ll have to convert
the variable lines to be a string value:

user = "Sammy"

lines = 50

print("Congratulations, " + user + "! You just wrote " + str(lines) + " lines of

code.")

Q3. Why print() and type functions are used in python explain with the help
of python coded examples for each function and explain in detail as well ?

Answer.

PRINT FUNCTION:

 The print() function prints the specified message to the screen, or other standard output
device.

The message can be a string, or any other object, the object will be converted into a string
before written to the screen.

Syntax
print(object(s), sep=separator, end=end, file=file, flush=flush)

Parameter Description

object(s) Any object, and as many as you like. Will be converted to
string before printed

sep='separator' Optional. Specify how to separate the objects, if there is more
than one. Default is ' '

end='end' Optional. Specify what to print at the end. Default is '\n' (line
feed)

file Optional. An object with a write method. Default is sys.stdout

flush Optional. A Boolean, specifying if the output is flushed (True)
or buffered (False). Default is False

Example
Print more than one object:

print("Hello", "how are you?")

Example
Print a tuple:

x = ("apple", "banana", "cherry")
print(x)

Example
Print two messages, and specify the separator:

print("Hello", "how are you?", sep="---")

TYPE FUNCTION:

type() method returns class type of the argument(object) passed as parameter. type()

function is mostly used for debugging purposes.

Two different types of arguments can be passed to type() function, single and three

argument. If single argument type(obj) is passed, it returns the type of given object. If

three arguments type(name, bases, dict) is passed, it returns a new type object.

Syntax :

type(object)

type(name, bases, dict)

Parameters :
name : name of class, which later corresponds to the __name__ attribute of the class.

bases : tuple of classes from which the current class derives. Later corresponds to the

__bases__ attribute.

dict : a dictionary that holds the namespaces for the class. Later corresponds to the

__dict__ attribute.

Q4. How addition operator is used to update the values of variables explain
with the help of Python coded example as well as explain the program?

Answer:
 One of the most common forms of reassignment is an update where the
new value of the variable depends on the old. For example,

x = x + 1

This means get the current value of x, add one, and then update x with the new value.
The new value of x is the old value of x plus 1. Although this assignment statement may
look a bit strange, remember that executing assignment is a two-step process. First,
evaluate the right-hand side expression. Second, let the variable name on the left-hand
side refer to this new resulting object. The fact that x appears on both sides does not
matter. The semantics of the assignment statement makes sure that there is no
confusion as to the result. The visualizer makes this very clear.

x = 6
x = x + 1

x = x + 1

x = 6 # initialize x

print(x)

x = x + 1 # update x

print(x)

If you try to update a variable that doesn’t exist, you get an error because Python
evaluates the expression on the right side of the assignment operator before it assigns
the resulting value to the name on the left. Before you can update a variable, you have
to initialize it, usually with a simple assignment. In the above example, x was initialized
to 6.

Updating a variable by adding 1 is called an increment; subtracting 1 is called
a decrement. Sometimes programmers also talk about bumping a variable, which
means the same as incrementing it by 1.

Q5. What type of errors do occur in Python, write the a program with
different
 types of errors as well as write separate correction code in python as
well as explain the errors?
Answer:

 TYPES OF ERROR:

The most common reason of an error in a Python program is when a certain
statement is not in accordance with the prescribed usage. Such an error is called
a syntax error. The Python interpreter immediately reports it, usually along with
the reason.

> print "hello"
SyntaxError: Missing parentheses in call to 'print'. Did you
mean print("hello")?

In Python 3.x, print is a built-in function and requires parentheses. The statement
above violates this usage and hence syntax error is displayed.

Many times though, a program results in an error after it is run even if it doesn't
have any syntax error. Such an error is a runtime error, called an exception. A
number of built-in exceptions are defined in the Python library. Let's see some
common error types.

IndexError is thrown when trying to access an item at an invalid index.

> L1=[1,2,3]
> L1[3]
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>

L1[3]
IndexError: list index out of range

ModuleNotFoundError is thrown when a module could not be found.

> import notamodule
Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
import notamodule
ModuleNotFoundError: No module named 'notamodule'

KeyError is thrown when a key is not found.

> D1={'1':"aa", '2':"bb", '3':"cc"}
> D1['4']
Traceback (most recent call last):
File "<pyshell#15>", line 1, in <module>
D1['4']
KeyError: '4'

ImportError is thrown when a specified function can not be found.

>from math import cube
Traceback (most recent call last):
File "<pyshell#16>", line 1, in <module>
from math import cube
ImportError: cannot import name 'cube'

StopIteration is thrown when the next() function goes beyond the
iterator items.

> it=iter([1,2,3])
> next(it)
1
> next(it)
2

> next(it)
3
> next(it)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
next(it)
StopIteration

A small typing mistake can lead to an error in any programming language because we
must follow the syntax rules while coding in any programming language.

This is the most common and basic error situation where you break any syntax rule like
if you are working with Python 3.x version and you write the following code for printing
any statement,

print "I love Python!"

SyntaxError: Missing parentheses in call to 'print'.

Because, Python 3 onwards the syntax for using the print statement has changed.
Similarly if you forget to add colon(:) at the end of the if condition, you will get
a SyntaxError:

if 7 > 5

 print("Yo Yo!")

SyntaxError: invalid syntax

EXPLANTION:

This code has an intentional error. Do not type it directly;
use it for reference to understand the error message below.
def print_message(day):
 messages = {
 'monday': 'Hello, world!',
 'tuesday': 'Today is Tuesday!',

 'wednesday': 'It is the middle of the week.',
 'thursday': 'Today is Donnerstag in German!',
 'friday': 'Last day of the week!',
 'saturday': 'Hooray for the weekend!',
 'sunday': 'Aw, the weekend is almost over.'
 }
 print(messages[day])

def print_friday_message():
 print_message('Friday')

print_friday_message()

ERROR

KeyError Traceback (most recent call last)
<ipython-input-1-4be1945adbe2> in <module>()
 14 print_message('Friday')
 15
---> 16 print_friday_message()

<ipython-input-1-4be1945adbe2> in print_friday_message()
 12
 13 def print_friday_message():
---> 14 print_message('Friday')
 15
 16 print_friday_message()

<ipython-input-1-4be1945adbe2> in print_message(day)
 9 'sunday': 'Aw, the weekend is almost over.'
 10 }
---> 11 print(messages[day])
 12
 13 def print_friday_message():

KeyError: 'Friday'

SOLUTION:

� 3 levels
� print_message
� 11
� KeyError
� There isn’t really a message; you’re supposed to infer that friday is not a key
in messages.

