
Name Muhammad Ali Khan REG 16550

Question No 1

Variable

A variable is a name which is associated with a value that can be changed. For

example when I write int i=10; here variable name is i which is associated with value

10, int is a data type that represents that this variable can hold integer values. We

will cover the data types in the next tutorial. In this tutorial, we will discuss about

variables.

How to Declare a variable in Java

To declare a variable follow this syntax:

data_type variable_name = value;

here value is optional because in java, you can declare the variable first and then

later assign the value to it.

For example: Here num is a variable and int is a data type. We will discuss the data

type in next tutorial so do not worry too much about it, just understand that int data

type allows this num variable to hold integer values. You can read data types here but

I would recommend you to finish reading this guide before proceeding to the next

one.

int num;

Similarly we can assign the values to the variables while declaring them, like this:

char ch = 'A';

int number = 100; Name Muhammad Ali Khan REG 16550

or we can do it like this:

char ch;

int number;

...

ch = 'A';

number = 100;

Variables naming convention in java

1) Variables naming cannot contain white spaces, for example: int num ber = 100; is

invalid because the variable name has space in it.

2) Variable name can begin with special characters such as $ and _

3) As per the java coding standards the variable name should begin with a lower case

letter, for example int number; For lengthy variables names that has more than one

words do it like this: int smallNumber; int bigNumber; (start the second word with

capital letter).

4) Variable names are case sensitive in Java.

Types of Variables in Java

There are three types of variables in Java.

1) Local variable 2) Static (or class) variable 3) Instance variable

Static (or class) Variable

Static variables are also known as class variable because they are associated with the
class and common for all the instances of class. For example, If I create three objects of
a class and access this static variable, it would be common for all, the changes made to
the variable using one of the object would reflect when you access it through other
objects.

Example of static variable

Name Muhammad Ali Khan REG 16550

public class StaticVarExample {
 public static String myClassVar="class or static variable";

 public static void main(String args[]){
 StaticVarExample obj = new StaticVarExample();
 StaticVarExample obj2 = new StaticVarExample();
 StaticVarExample obj3 = new StaticVarExample();

 //All three will display "class or static variable"
 System.out.println(obj.myClassVar);
 System.out.println(obj2.myClassVar);
 System.out.println(obj3.myClassVar);

 //changing the value of static variable using obj2
 obj2.myClassVar = "Changed Text";

 //All three will display "Changed Text"
 System.out.println(obj.myClassVar);
 System.out.println(obj2.myClassVar);
 System.out.println(obj3.myClassVar);
 }
}
Output:

class or static variable
class or static variable
class or static variable
Changed Text
Changed Text
Changed Text
As you can see all three statements displayed the same output irrespective of the
instance through which it is being accessed. That’s is why we can access the static
variables without using the objects like this:

System.out.println(myClassVar);
Do note that only static variables can be accessed like this. This doesn’t apply for
instance and local variables.

Instance variable

Each instance(objects) of class has its own copy of instance variable. Unlike static
variable, instance variables have their own separate copy of instance variable. We have

changed the instance variable value using object obj2 in the following program and
when we displayed the variable using all three objects, only the obj2 value got changed,
others remain unchanged. This shows that they have their own copy of instance
variable.

Example of Instance variable

public class InstanceVarExample {
 String myInstanceVar="instance variable";

 public static void main(String args[]){
 InstanceVarExample obj = new InstanceVarExample();
 InstanceVarExample obj2 = new InstanceVarExample();
 InstanceVarExample obj3 = new InstanceVarExample();

 System.out.println(obj.myInstanceVar);
 System.out.println(obj2.myInstanceVar);
 System.out.println(obj3.myInstanceVar);

 obj2.myInstanceVar = "Changed Text";

 System.out.println(obj.myInstanceVar);
 System.out.println(obj2.myInstanceVar);
 System.out.println(obj3.myInstanceVar);
 }
}
Output:

instance variable
instance variable
instance variable
instance variable
Changed Text
instance variable
Local Variable

These variables are declared inside method of the class. Their scope is limited to the
method which means that You can’t change their values and access them outside of the
method.

In this example, I have declared the instance variable with the same name as local
variable, this is to demonstrate the scope of local variables.

Example of Local variable Name Muhammad Ali Khan REG 16550

public class VariableExample {
 // instance variable
 public String myVar="instance variable";

 public void myMethod(){
 // local variable
 String myVar = "Inside Method";
 System.out.println(myVar);
 }
 public static void main(String args[]){
 // Creating object
 VariableExample obj = new VariableExample();

 /* We are calling the method, that changes the
 * value of myVar. We are displaying myVar again after
 * the method call, to demonstrate that the local
 * variable scope is limited to the method itself.
 */
 System.out.println("Calling Method");
 obj.myMethod();
 System.out.println(obj.myVar);
 }
}
Output:

Calling Method
Inside Method
instance variable

Q2. Why “If” is used in java justify your answer with the help java coded
 example and explain in detail?

Java if, Statement

In computer programming, it's often desirable to execute a certain section of

code based upon whether the specified condition is true or false (which is

known only during the run time). For such cases, control flow statements are

used.

Defination
If statement consists a condition, followed by statement or a set of statements as
shown below:

if(condition){
 Statement(s);
}

The statements gets executed only when the given condition is true. If the

condition is false then the statements inside if statement body are completely

ignored.

Why we use if?

The Java if statement is the most simple decision-making statement. It is used to decide

whether a certain statement or block of statements will be executed or not i.e if a

certain condition is true then a block of statement is executed otherwise not. Control falls into

the if block.

Java if (if-then) Statement

In Java, the syntax of the if-then statement is:

if (expression) {

 // statements

}

Here expression is a boolean expression. A boolean expression returns either true

or false.

 if the expression is evaluated to true, statement(s) inside the body

of if (statements inside parenthesis) are executed

 if the expression is evaluated to false, statement(s) inside the body of if are

skipped from execution

How if statement works?

Working of Java if statement

Example 1: Java if Statement

class IfStatement {

 public static void main(String[] args) {

 int number = 10;

 // checks if number is greater than 0

 if (number > 0) {

 System.out.println("The number is positive.");

 }

 System.out.println("This statement is always executed.");

 }

}

Output:

The number is positive.

This statement is always executed.

In the above example, we have a variable named number. Here, the test expression

checks if the number is greater than 0 (number > 0).

Since the number is greater than 0. So the test expression evaluates to true . Hence

code inside the body of if is executed.

Now, change the value of the number to a negative integer. Let's say -5.

int number = -5;

If we run the above program with the new value of the number, the output will be:

This statement is always executed.

Here, the value of number is less than 0 . So, the test expression number >

0 evaluates to false . Hence, the body of if is executed.

Q3. Why “if else if” is used in java justify your answer with the help java coded
 example and explain in detail?

Java if..else..if Statement

In Java, we have an if...else...if ladder, that can be used to execute one block of

code among multiple other blocks.

if (expression1) {

 // codes

}

else if(expression2) {

 // codes

}

else if (expression3) {

 // codes

}

.

.

else {

 // codes

}

Here, if statements are executed from the top towards the bottom. As soon as

the test expression is true , codes inside the body of that the if statement is

executed. Then, the control of the program jumps outside the if-else-if ladder.

If all test expressions are false , codes inside the body of else is executed.

Example 3: Java if..else..if Statement

class Ladder {

 public static void main(String[] args) {

 int number = 0;

 // checks if number is greater than 0

 if (number > 0) {

 System.out.println("The number is positive.");

 }

 // checks if number is less than 0

 else if (number < 0) {

 System.out.println("The number is negative.");

 }

 else {

 System.out.println("The number is 0.");

 }

 }

}

Output:

The number is 0.

In the above example, we are checking whether the number is positive, negative or

zero. Here, we have two test expressions:

 number > 0 - checks if the number is greater than 0

 number < 0 - checks if the number is less than 0

Here, the value of number is 0. So both the test expression evaluates to false .

Hence the statement inside the body of else is executed.

Q4. What are loops, why they are used in java and how many types of loops are
 being supported by java explain in detail?

WHAT AND WHY WE USE LOOP

In computer programming, loops are used to repeat a block of code. For example,

if you want to show a message 100 times, then rather than typing the same code

100 times, you can use a loop.

In Java, there are three types of loops.

 for loop

 while loop

 do...while loop

This tutorial focuses on the for loop. You will learn about the other type of loops

in the upcoming tutorials.

Java for Loop

Java for loop is used to run a block of code for a certain number of times. The

syntax of for loop is:

for (initialExpression; testExpression; updateExpression) {

 // body of the loop

}

Here,

1. The initialExpression initializes and/or declares variables and executes only

once.

2. The condition is evaluated. If the condition is true, the body of the for loop is

executed.

3. The updateExpression updates the value of initialExpression.

4. The condition is evaluated again. The process continues until

the condition is false.

To learn more about the conditions, visit Java relational and logical operators.

https://www.programiz.com/java-programming/do-while-loop#syntax-while
https://www.programiz.com/java-programming/do-while-loop#do-while-loop
https://www.programiz.com/java-programming/operators#equality-relational
https://www.programiz.com/java-programming/operators#logical

Flowchart of Java for loop

Example 1: Display a Text Five Times

// Program to print a text 5 times

class Main {

 public static void main(String[] args) {

 int n = 5;

 // for loop

 for (int i = 1; i <= n; ++i) {

 System.out.println("Java is fun");

 }

 }

}

Output

Java is fun

Java is fun

Java is fun

Java is fun

Java is fun

Here is how this program works.

Iteration Variable Condition: i <= n Action

1st
i = 1

n = 5
true

Java is fun is printed.

i is increased to 2.

2nd
i = 2

n = 5
true

Java is fun is printed.

i is increased to 3.

3rd
i = 3

n = 5
true

Java is fun is printed.

i is increased to 4.

4th
i = 4

n = 5
true

Java is fun is printed.

i is increased to 5.

5th
i = 5

n = 5
true

Java is fun is printed.

i is increased to 6.

6th
i = 6

n = 5
false The loop is terminated.

Java while and do...while Loop

In this tutorial, we will learn how to use while and do while loop in Java with the

help of examples.

In computer programming, loops are used to repeat a block of code. For example,

if you want to show a message 100 times, then you can use a loop. It's just a

simple example; you can achieve much more with loops.

In the previous tutorial, you learned about Java for loop. Here, you are going to

learn about while and do...while loops.

Java while loop

Java while loop is used to run a specific code until a certain condition is met. The

syntax of the while loop is:

while (testExpression) {

 // body of loop

}

Here,

1. A while loop evaluates the textExpression inside the parenthesis ().

2. If the textExpression evaluates to true , the code inside the while loop is executed.

3. The textExpression is evaluated again.

4. This process continues until the textExpression is false.

5. When the textExpression evaluates to false, the loop stops.

To learn more about the conditions, visit Java relational and logical operators.

Flowchart of while loop

https://www.programiz.com/java-programming/for-loop
https://www.programiz.com/java-programming/operators#equality-relational
https://www.programiz.com/java-programming/operators#logical

Flowchart of Java while loop

Example 1: Display Numbers from 1 to 5

// Program to display numbers from 1 to 5

class Main {

 public static void main(String[] args) {

 // declare variables

 int i = 1, n = 5;

 // while loop from 1 to 5

 while(i <= n) {

 System.out.println(i);

 i++;

 }

 }

}

Output

1

2

3

4

5

Here is how this program works.

Iteration Variable Condition: i <= n Action

1st
i = 1

n = 5
true

1 is printed.

i is increased to 2.

2nd
i = 2

n = 5
true

2 is printed.

i is increased to 3.

3rd
i = 3

n = 5
true

3 is printed.

i is increased to 4.

4th
i = 4

n = 5
true

4 is printed.

i is increased to 5.

5th
i = 5

n = 5
true

5 is printed.

i is increased to 6.

6th
i = 6

n = 5
false The loop is terminated

Java do...while loop

The do...while loop is similar to while loop. However, the body of do...while loop

is executed once before the test expression is checked. For example,

do {

 // body of loop

} while(textExpression)

Here,

1. The body of the loop is executed at first. Then the textExpression is evaluated.

2. If the textExpression evaluates to true , the body of the loop inside

the do statement is executed again.

3. The textExpression is evaluated once again.

4. If the textExpression evaluates to true , the body of the loop inside

the do statement is executed again.

5. This process continues until the textExpression evaluates to false. Then the loop

stops.

Name Muhammad Ali Khan REG 16550

Flowchart of do...while loop

Flowchart of Java do while loop

Let's see the working of do...while loop.

Example 3: Display Numbers from 1 to 5

// Java Program to display numbers from 1 to 5

import java.util.Scanner;

// Program to find the sum of natural numbers from 1 to 100.

class Main {

 public static void main(String[] args) {

 int i = 1, n = 5;

 // do...while loop from 1 to 5

 do {

 System.out.println(i);

 i++;

 } while(i <= n);

 }

}

Output

1

2

3

4

5

Here is how this program works.

Iteration Variable Condition: i <= n Action

i = 1

n = 5
not checked

1 is printed.

i is increased to 2.

1st
i = 2

n = 5
true

2 is printed.

i is increased to 3.

2nd
i = 3

n = 5
true

3 is printed.

i is increased to 4.

3rd
i = 4

n = 5
true

4 is printed.

i is increased to 5.

4th
i = 5

n = 5
true

6 is printed.

i is increased to 6.

5th
i = 6

n = 5
false The loop is terminated

Q5. Write 3’s table in decremented form in java which takes input from user write
 java coded program and explain in detail?
import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 System.out.println("Muhammad Ali Khan"+"REG#16550");

 System.out.println("Input the Number: ");

 int n = in .nextInt();

 for (int i = 10; i >= 1; i--) {

 System.out.println(n + "*" + i + " = " + (n * i));

 }

 }

}

Details

In Above code Scanner in = new Scanner(System.in); int n = in .nextInt();

are used for Input

And for the repetition of table we used for

 for (int i = 10; i >= 1; i--) {

 System.out.println(n + "*" + i + " = " + (n * i)); and this the output code of table

