Name:Momin Hussain id\#14672 Software Engineering
Question No. 1:
a) Find the 36 th term of the arithmetic sequence whose 3 rd term is 7 and $8^{\text {th }}$ term is 17 .

Answer
let a be the first term and d be the common difference of the arithmetic sequance. Then

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& a_{3}=a+(3-1) d \text { and } \\
& a_{8}=a+(8-1) d
\end{aligned}
$$

Given that $a_{3}=7$ and $a_{8}=17$ There for

$$
\begin{aligned}
7 & =a+2 d \cdots(1) \text { and } \\
17 & =a+7 d \cdots(2)
\end{aligned}
$$

Subtracting (1) from (2) we get

$$
\begin{aligned}
& 10=5 d \\
& d=2
\end{aligned}
$$

Subtracting $d=2$ in (1) we have
$7=a+20)$
which gives $a=3$
Thus $a_{n}=a+(n-1) d$
$a_{n}=3+(n-1) 2$ losing value of ant hence the value of $36^{\text {th }}$ teporm is

$$
\begin{aligned}
a_{36} & =3+(36-1) 2 \\
& =3+70 \\
& =73
\end{aligned}
$$

Question No. 2:
Find $\boldsymbol{f o g}(\mathbf{x})$ and $\boldsymbol{g} \circ \boldsymbol{f}(\boldsymbol{x})$ of the functions $\mathrm{f}(\mathrm{x})=2 x+3$ and $g(x)=-x^{2}+5$
Answer

Prove by mathematical induction that the statement is true for all integers $n \geq 1$ (10)

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Answer
$-=$ Solution

Step
$P(1)$ is true
for $n=1$
L.H.S of $P(1)=(1)^{2}=1$

$$
\begin{aligned}
\text { RHS of } P(1) & =\frac{1(1+1)(2(1)+1)}{6} \\
& =\frac{(1)(2)(3)}{6}=\frac{6}{6}=1
\end{aligned}
$$

So L.H.S $=$ R.H. S of $P(1)$ Hence $P(1)$ is tues
Suppose $P(K)$ is true for some integer K

$$
1^{2}+2^{2}+3^{2}+\cdots \cdot k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

To prove $P(k+1)$ is true ie;

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)(k+1+1)(2(k+1)}{6}
$$

Consider LHS of above equation

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2} \\
&=1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2} \\
&=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
&=(k+1)\left[\frac{k(2 k+1)}{6}+(k+1)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & (k+1)\left[\frac{k(2 k+1)+6(k+1)}{6}\right] \\
= & (k+1)\left[\frac{2 k^{2}+k+6 k+6}{6}\right] \\
= & \frac{(k+1)}{6} \\
& \frac{(k+1)(k+2)(2 k+3)}{6} \\
= & \frac{(k+1)(k+1+1)(2(k+1)+1}{6}
\end{aligned}
$$

Discuss different types of relations with example in detail.
Answer
Binary Relation Ship
Let A ad B be sets. The binary relation R from A to B is a subset of $A \times B$

Example
Let $A=\{1,2\}, B=\{1,2,3\}$
Domain of a Relation
The domain of a relation R from A to B is the set of all first. clemat of the order pairs.

- R denoted by $\operatorname{Dom}(R)$

Symbolically $\operatorname{Dom} R=\{a \in A \mid(a, b) \in R\}$
Range of a Relation
The range of a relation R from A to B is the set of all second element of the orderd pair which belong $\operatorname{Ran}(R)$ Symbolically $\operatorname{Ran}(R)=\{b \in B \mid(6, b) \in R\}$

Reflexive Relation
Let R be a relation on a set $A . R$ is reflexive if ad only if, for all $a \in A,(a, a) \in R$ rut is each elemat of A is related to itself.

Symmetric relation
Let R be a relation on a seta $A \cdot R$ is symmetric: if $a d$ only if for all $a, b \in A$ if $(a, b) \in R$ then $(b, a \in R$.

Transitive relation
Let R be a relation on a set A. R is transitive if ad orly if for all $a, b, c \in A$ if $(a b) \in R$ ad $(b, c) \in A$ then $(a, c) \in R$.

Question No. 5
Suppose that an automobile license plate has three letters followed by three digits.
a. How many different license plates are possible?
b. How many license plates could begin with A and end on 0 .
c. How many license plates begin with PQR

