Name
Kashif Ahmed
Id 14225

Subject
Business Maths
Program
BBA
Submitted To Sir Liaqat Ali
Summers (Final Term)

Question No. 1

1	E
2	B
3	B
4	E
5	C
6	E
7	E
8	E
9	E
10	A

Question No. 2

a. A father is four times as old his son now. After 24 years he would be twice as old as his son. What are the present ages of the father and the son?

Solution

Let x and y be present ages of son and father respectively

$$
\begin{equation*}
\mathrm{Y}=4 \mathrm{x} \tag{1}
\end{equation*}
$$

After 24 year the ages of son will be

$$
\mathrm{Y}+24=2(\mathrm{x}+24)
$$

Or $\quad \mathrm{Y}+24=2 \mathrm{x}+48$
$Y-2 x=48-24$
$Y-2 x=24 \ldots \ldots$ (2)
Put $\mathrm{y}=4 \mathrm{x}$ in eq. (2) i.e.

$$
\begin{aligned}
& Y-2 x=24 \\
& 4 x-2 x=24 \\
& 2 x=24 \\
& X=12
\end{aligned}
$$

Put $x=12$ in eq. (1)
$\mathrm{Y}=4 \times 12$
$\mathrm{Y}=48$
Present age of father $=y=48$
Present age of son $=x=12 \quad$ Answer
b. Solve the following simultaneous equations for \mathbf{x} and \mathbf{y}.
$x+3 y=-1 / 3$
$4 x-1 / 5=2 / 2$

Solution:

$X+3 y=-1 / 3$
$4 x-1 / 5 y=2 / 2$
Let,
$X+3 y=-1 / 3 \rightarrow$ eq (1)
$4 x-1 / 5 y=2 / 2 \rightarrow$ eq (2)
Now, multiply eq (1) by 4 then substract eq (2) from eq(1)

$$
\begin{aligned}
& 4 x+12 y=-4 / 3 \\
& +4 x-1 / 5 y=+2 / 2 \\
& \hline \quad 12 y+1 / 5 y=-4 / 3-1
\end{aligned}
$$

$$
\begin{aligned}
61 y / 5 & =-7 / 3 \\
61 y & =-7 * 5 / 3 \\
61 y & =-35 / 3 \\
y & =-35 / 61 * 3 \\
y & =-35 / 183
\end{aligned}
$$

Now putting value at y in eq (2)

$$
\begin{aligned}
& 4 \mathrm{x}-1 / 5(-35 / 183)=2 / 2 \\
& 4 \mathrm{x}+7 / 183=1 \\
& 4 \mathrm{x}=1-7 / 183 \\
& 4 \mathrm{x}=183-7 / 183 \\
& 4 \mathrm{x}=176 / 183 \\
& \mathrm{X}=176 / 183 * 4 \\
& \mathrm{X}=44 / 183
\end{aligned}
$$

So,
$X=44 / 183$ and $y=-35 / 183$

Question No. 3

a. Simplify by using exponential laws $\quad \frac{x^{-3}}{x^{-3 / 2}} \div \frac{x}{x^{3 / 4} y^{-2}} \times \frac{x^{2} y^{-3}}{y^{1 / 3}}$

Solution

$$
\begin{aligned}
& \frac{x^{-3}}{x^{-3 / 2}} \div \frac{x}{x^{3 / 4} y^{-2}} \times \frac{x^{2} y^{-3}}{y^{1 / 3}} \\
& \frac{x^{-3}}{x^{-3 / 2}} \times \frac{x^{3 / 4} y^{-2}}{x} \times \frac{x^{2} y^{-3}}{y^{1 / 3}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{x^{-3}}{x^{-3 / 2}}=\frac{1}{x^{3 / 2}} \\
=\frac{1}{x^{3 / 2}} \times \frac{x^{3 / 4} y^{-2}}{x} \times \frac{x^{2} y^{-3}}{y^{1 / 3}} \\
\frac{x^{3 / 4} y^{-2}}{x}=\frac{1}{x^{1 / 4} y^{2}} \\
=\frac{1}{x^{3 / 2}} \times \frac{1}{x^{1 / 4} y^{2}} \times \frac{x^{2} y^{-3}}{y^{1 / 3}} \\
\frac{x^{2} y^{-3}}{y^{1 / 3}}=\frac{x^{2}}{y^{10 / 3}} \\
=\frac{1}{x^{3 / 2}} \times \frac{1}{x^{1 / 4} y^{2}} \times \frac{x^{2}}{y^{10 / 3}} \\
\frac{1}{x^{3 / 2} x^{1 / 4} y^{2} y^{10 / 3}} \\
\frac{x^{2}}{x^{\frac{3}{2}+1 / 4} y^{2+10 / 3}}
\end{gathered}
$$

Apply eponent rule:-

$$
\begin{gathered}
\frac{x^{2-\left(\frac{3}{2}+\frac{1}{4}\right)}}{y^{2+10 / 3}} \\
\frac{x^{1 / 4}}{y^{16 / 3}}
\end{gathered}
$$

b. Find the value of \mathbf{x} by using logarithmic laws $\quad x^{3}=\frac{7^{3} \times(0.4500)^{2}}{0.0004 \times(0.0205)^{4}}$

Solution:

Find the value of x by using logarithmic laws
Solution

$$
\begin{gathered}
x^{3}=\frac{7 \times 7 \times 7(0.4500 \times 0.4500)}{0.0004(0.0205) 4} \\
x^{3}=\frac{69.4575}{7.0644 \times 10^{\wedge} 11} \\
x^{3}=69.457 \times 7.0644 \times 10^{\wedge} 11 \\
\left(x^{3}\right)^{\wedge}(1 / 3)=\left(69.457 \times 7.0644 \times 10^{\wedge} 11\right) \frac{1}{3} \\
\mathbf{x}=\mathbf{9 9 4 3 . 6 7} \text { Answer }
\end{gathered}
$$

Question No. 4

If
$\mathrm{U}=$ the set of even numbers less than 24,
$A=t h e ~ s e t ~ o f ~ n u m b e r s ~ d i v i s i b l e ~ b y ~ 4 ~ l e s s ~ t h a n ~ 20, ~$
$B=$ the set of numbers divisible by 4 or 8 less than 16,
$\mathbf{C}=$ the set of numbers which are multiples of $\mathbf{2}$ and less than $\mathbf{2 0}$,
Then find the following
Show that $(A \cup B)^{C}=\left(A^{C} \cap B^{C}\right)$ and b. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Solution:
$\mathrm{U}=(2,4,6,8,10,12,14,16,18,20,22)$
$A=(4,8,12,16)$
$\mathrm{B}=(4,8,12)$
$C=(2,4,6,8,10,12,14,16,18)$

Show that

$$
\begin{aligned}
& \mathrm{A},(\mathrm{AUB})=\mathrm{AnB} \\
& \mathrm{AuB}=(4,8,12,16) \mathrm{u}(4,8,12) \\
& \mathrm{AuB}(4,8,12,16) \\
& \mathrm{AuB}=\mathrm{U}(\mathrm{AuB})(2,4,6,8,10,12,14,16,18,20,22) \\
& (4,8,12,16)
\end{aligned}
$$

AuB (2.6.10, 14, 18, 20, 22)
$\mathrm{A}=\mathrm{U}[\mathrm{A}=(2,4,6,8,10,12,14,16,18,20,22)$ $(4,8,12,16)$

A* $(2,6,10,14,18,20,22)$

$$
\mathrm{B}^{*}=\mathrm{U}[\mathrm{~B}=(2,4,6,8,10,12,14,16,18,20,22)
$$

$$
(4,8,12)
$$

$$
B^{*}=(2,6,10.14,16,18,20,22)
$$

$$
\mathrm{A}^{*} \mathrm{UB} *=(2,, 10,14,18,20,22) \mathrm{U}(2,6,10)
$$

$$
(14,16,18,20,22)
$$

$\mathrm{A}^{*} \mathrm{UB} *=(2,6,10,14,18,20,22)$
$\mathrm{An}(\mathrm{Buc})=(\mathrm{AnB}) \mathrm{U}(\mathrm{AnC})$
$\mathrm{An}(\mathrm{BuC})$
$\mathrm{BuC}=(4,8,12) \mathrm{U}(2,4,6,8,10,12,14,16,18)$
$\operatorname{BUC}=(2,4,6,8,10,12,14,16,18)$
$\operatorname{An}(b u C)=(4,8,12,16) n,(2,4,6,8,10,12)$
$\operatorname{An}(\mathrm{buC})=(4,8,12,16)$
$(\mathrm{AnB}) \mathrm{u}(\mathrm{AnC})=$?
$\mathrm{A}=(4,8,12,16), \mathrm{B}=(4,8,12)$
$\mathrm{AnB}=(4,8,12,16) \mathrm{n}(4,8,12)$
$\mathrm{AnB}=(4,8,12)----------1$
$\mathrm{AnC}=(4,8,12,16) \mathrm{n}(2,4,6,8,10,12,14,16,18)$
$\mathrm{AnC}=(4,8,12,16)--------2$

Eq 1 and Eq2

$(A n B) u(A n C)=(4,8,12) u(4,8,12,16) \backslash$
$(A n b) u(A n B)=(4,8,12,16)$
Therefore $\mathrm{An}(\mathrm{BuC})=(\mathrm{AnB}) \mathrm{u}(\mathrm{AnC})$
Hence proved

Question No. 5

a. List price $=\mathbf{\$ 1 5 0}$

Trade discount $=\mathbf{2 0 \%}$, Find the net cost.
c. \quad Cost price $=\mathbf{\$ 1 0}$

Markup $=\mathbf{\$ 6 . 2 0}$
Find markup percent on cost, also find Selling price
List price $=\$ 150$
Trade discount $=20 \%$, Find the net cost.

SOLUTION:

List price $=\$ 150$
Trade discount $=20 \%$
Find the net cost
List price $=\$ 150$

Trade discount $=20 \%=20 \times 1 / 100 \times 150=30$
Net cost $=$?
Net cost =list price - trade discount

$$
\begin{aligned}
& =150-30 \\
& =\mathbf{1 2 0}
\end{aligned}
$$

PART (B)

Cost price $=\$ 10$
Markup $=\$ 6.20$
Find markup percent on cost, also find Selling price
Finding markup percentage cost: markup percentage $=($ markup cost $) /($ cost price $) \times 100$
6.20/10 x100

Markup percent $=62$
Selling price $=$
Solution as we have formula for the selling price
Markup on Cost= ((price-cost)/cost)
Markup on Cost=0.62((price-10)/10)
By performing the cross multiplications we will get the following solution in The following ways
$0.62 \times 10=$ price -10
6.2=price-10

Price $=6.2+10$

Selling Price=16.2

So we came across with the value of selling price that is " 16.2 "

