Department of Electrical Engineering
 Assignment
 Date:13/04/2020

Course Details

Course Title:	Digital Signal Processing		Module:
Instructor:	Pir Meher Ali Shah	Total Marks:	

Student Details

Name: ADNAN SHAH
Student ID:
13692

	(a)	Consider the following analog signal $x_{a}(\mathrm{t})=3 \cos 100 \pi \mathrm{t}+4 \sin 200 \pi \mathrm{t}$ i. Determine the minimum sampling rate required to avoid aliasing. ii. Suppose that the signal is sampled at the rate $F_{s}=100 \mathrm{~Hz}$. What is the discrete-time signal obtained after sampling? Also explain the effect of this sampling rate on the newly generated discrete time signal. iii. What is the analog signal $y_{a}(\mathrm{t})$ we can reconstruct from the samples if we use ideal interpolation?	Marks 5
Q1.	(b)	Consider a discrete time signal which is given by$x(n)=\left\{\begin{array}{lc} 0.5 n, & n \geq 0 \\ 0, & n<0 \end{array}\right.$	Marks 5
			CLO 1
		This is signal is sampled at the rate $F_{s}=200 \mathrm{~Hz}$. i. Draw the sampled signal. ii. The samples of the signals are intended to carry 3 bits per sample. Determine the quantization level and quantization resolution to quantized the sampled signal achieved in part i. iii. Perform the process of truncation and rounding off on all the values of the sampled signal and find the quantization error for each of the sampled data. Express your answer in tabular form.	
	(a)	Determine the response of the system to the following input signal with given impulse response$x[n]=\{2, \underset{\uparrow}{\underset{\uparrow}{,}-2,3,-4\}} \quad, h[n]=\{\underset{\uparrow}{3}, 1,2,1,4\}$	Marks 5
Q2.			CLO 2

Adman Suan(13692) pager
Ans.1@1i

$$
u_{a}(t)=3 \cos 100 \pi t+4 \sin 200 \pi t
$$

Solution:
minimum sampling rate will be; According to Nequist criteria:

$$
f s \geq 2 f \max
$$

Here; $f_{1}=\frac{\omega_{1}}{2 \pi}$
and $\omega_{1}=100 \pi$
So $f_{1}=\frac{500}{\frac{100}{8 \pi}}$

$$
\left\{f_{1}=50 \mathrm{~Hz}\right\}
$$

And

$$
\begin{aligned}
f_{2} & =\frac{100}{\frac{200 \pi}{2 \pi}} \\
\left\{f_{2}\right. & =100 \mathrm{~Hz}\}
\end{aligned}
$$

we know that $f_{2}>f_{1}$
So $f s \geqslant 2 \times f 2$
$f s \geqslant 2 \times 100 \Rightarrow$ minimum sampling rate required to avoid aliasing.

Ans(1)(i)(ii) Sampling rate $E s=100 \mathrm{~Hz}$
Solution:

$$
F_{s}=100 \mathrm{HZ}
$$

So f_{1}^{\prime} will be;

$$
\begin{aligned}
& f_{1}^{\prime}=\frac{f_{1}}{f_{5}} \quad \because f_{1}=50 \mathrm{~Hz} \\
& f_{1}^{\prime}=\frac{80^{\circ}}{100} \\
& f_{1}^{\prime}=0.5 \mathrm{HZ}
\end{aligned}
$$

Hence f_{2} will be;

$$
\begin{aligned}
& f_{2}^{\prime}=\frac{f_{2}}{E_{s}} \\
& f_{2}^{\prime}=\frac{100}{100} \\
& f_{2}^{\prime}=1 H 1 Z
\end{aligned}
$$

So $\omega_{1}^{\prime}=2 \pi f_{1}^{\prime}$

$$
\begin{aligned}
& \omega_{1}^{\prime}=2 \pi(0.5) \\
& \left\{\omega_{i}^{\prime}=\pi\right\}
\end{aligned}
$$

And

$$
\begin{aligned}
& { }^{d}{w_{2}^{\prime}}^{\prime}=2 \pi f_{2}^{\prime} \\
& \omega_{2}^{\prime}=2 \pi(1) \\
& \left\{\omega_{2}^{\prime}=2 \pi\right\}
\end{aligned}
$$

$$
u[n]=3 \cos 100 \pi n+4 \sin 200 \pi n
$$

So the discrete time Signal after Sampling will be;

$$
x[n]=3 \cos \pi n+4 \sin 2 \pi^{n}
$$

So the effect on newly generated discrete time signal is that there will be mo Aliasing effect. So when we reconstruct the signal there will be no distortion and we can get the desired signal.
(1)(a) (iii) Yes, we can reconstruct the orignal signal if we use ideal interpolation.
one folding frequency is

$$
\begin{aligned}
& =\frac{E S}{2} \\
& =\frac{100}{2} \\
& =50 \mathrm{HZ}
\end{aligned}
$$

tine orignal signal frequencies are;

$$
f_{1}=50 \mathrm{HZ}, \quad f_{2}=100 \mathrm{~Hz}
$$

Hence these frequencies are equal or greater than folding frequency.

So the signal will be;

$$
u_{a}(t)=3 \cos 100 \pi t+4 \sin 200 \pi t
$$

The signal is exactly the same to orignal Because we use ideal interpolation.

Ans(1) (b) (i)

$$
\begin{aligned}
& u(n)= \begin{cases}0.5^{n}, & n \geq 0 \\
0, & n<0\end{cases} \\
& F S=2 H z
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
n(n) & 0.5^{n} \\
0 & 0.5^{0}=1 \\
0.5 & 0.5^{0.5}=0.707 \\
1 & 0.5^{1}=0.5 \\
1.5 & 0.5^{2.5}=0.353 \\
2 & 0.5^{2}=0.25
\end{array}
$$

Gue signal will be;

(1)(5)(ii) Given data:
carry 3 bit' Der Sample Required:

Quantization level ε_{1} Quantization resolution.

Solution:
Quantization level =

$$
\begin{aligned}
& \text { Bits }=n=3 \\
& C=2^{n} \\
& L=2^{3} \\
& C=8 \text { levels } \\
& \text { Q. Resolution }=\frac{n \max -n \min }{L} \\
&=\frac{1-0}{8} \\
&=0.125
\end{aligned}
$$

Quantization level
(i) (b) (iii)

Ans (2) (a)

$$
\begin{aligned}
& u[x]=\{2,1,-2,3,-4\} \\
& u[x]=\left\{\begin{array}{l}
3,1,2,1,4\}
\end{array}\right.
\end{aligned}
$$

Solution:
To find $y(n)$, we convolve $u[n]$

$$
\text { and } n[n]
$$

$n[n]$

So to find

$$
y[n]=\sum_{n=-\infty}^{\infty} n[n] * n[n]
$$

Now in convolution we replace n with k

$$
\text { with } y[k]=\sum_{k=-\infty}^{\infty} u[k] u[-k]
$$

Now introduce shifting of no in $n[-k]$

$$
\text { introduce } y_{0}\left[n_{0}\right]=\sum_{k=-\infty}^{\infty} x[k] n\left[n_{0}-k\right]
$$

$$
n[-\ll]
$$

For $n_{0}=0$

$$
y[0]=\sum_{k=1}^{0} n(-1) n(-1)+n(0) n(0)
$$

$$
\begin{aligned}
& =(2 \times 11+1 \times 3) \\
& =2+3 \\
& =5
\end{aligned}
$$

For $n_{0}=-1$

$$
n[-1-k]
$$

$$
\begin{aligned}
& n(-1-k) \\
& y(-1)= n(-1) n(-1) \\
& 2 \times 3 \\
&=6
\end{aligned}
$$

$n[1-k]$

For $n_{0}=1$

$$
n(1-k)
$$

$y(1)=u(-1) n(-1)+u(0) n(0)+u(1) n(1)$

$$
\begin{aligned}
& =n(-1) n(-1)+(-2 \times 3) \\
& =(2 \times 2)+(1 \times 1)+(-6)
\end{aligned}
$$

$$
=4+1+(-6)
$$

$$
=-1
$$

For $n_{0}=2$

$$
n(2-k)
$$

$$
\begin{aligned}
& n(2-k) \\
& y(2)=n(-1) n(-1)+n(0) n(0)+n(1) n(1)+u(n) n(2) \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& =x(-1) n(-1)+x(0) n(0)+x(1) x+3 \times 1) \\
& =(2 \times 1)+(1 \times 2)+(-2 \times 1)+(3)
\end{aligned}
$$

$$
=2+2+(-2)+9
$$

$$
=2+9
$$

For $n_{0}=3$

$$
\begin{aligned}
y(3)= & u(-1) u(-1)+u(0) u(0)+x(-1)(n(-1))+ \\
& x(2) n(9)+x(3)(4(3)) \\
= & (2 \times 4)+(1 \times 1)+(-2 \times 2)+ \\
& (3 \times 1)+(-4 \times 3) \\
= & 9+1-4+3-12 \\
y(3) & =9-4-9
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } n_{0}= 4 \\
& \begin{aligned}
y(4)= & n(0) n(0)+n(1) n(1)+ \\
& n(2) n(2)+n(3)(n(3)) \\
= & (1 \times 4)+(-2 \times 1)+(3 \times 2)+(-4 \times 1) \\
= & 4-2+6-4 \\
y(4)= & 4
\end{aligned}
\end{aligned}
$$

$$
\text { For } \begin{aligned}
n_{0} & =5 \\
y(5) & =x(1) 4(1)+x(2) n(2)+ \\
& x(3) n(3) \\
& =(-2 \times 4)+(3 \times 1)+(-4 \times 2) \\
& =-8+3-8 \\
& =-13
\end{aligned}
$$

$$
n[u-k]
$$

$$
n[5-k]
$$

For $n_{0}=6$

$$
\begin{aligned}
y(6) & =x(2) n(2)+x(3) n(3) \\
& =(3 \times 4)+(-4 \times 1) \\
& =(2-4 \\
& =8
\end{aligned}
$$

For $\eta_{0}=7$

$$
\begin{aligned}
y(7) & =x(3)(4(3)) \\
& =-4 \times 4 \\
& =-18
\end{aligned}
$$

So there is no more overlaping.

$$
y[n]=\{6,5,-1,11,-4,4,-13,8,-16\}
$$

Ans (2) (b)

$$
\begin{aligned}
& u(n)= \begin{cases}\alpha^{n+1}, & -3 \leq n \leq 5 \\
0, & \text { elsewnere }\end{cases} \\
& n(n)= \begin{cases}2^{n}, & 0 \leq n \leq 4 \\
0, & \text { elsewnere }\end{cases}
\end{aligned}
$$

Solation:

$$
\begin{aligned}
& n(n)=\alpha^{n+1} \\
& =\alpha^{-3+1}=\alpha^{-2} \\
& =\alpha^{-2+1}=\alpha^{-1} \\
& =\alpha^{-1+1}=\alpha^{0}=1 \\
& =\alpha^{0+1}=\alpha^{1} \\
& =\alpha^{1+1}=\alpha^{2} \\
& =\alpha^{2+1}=\alpha^{3} \\
& =\alpha_{3+1}=\alpha_{4} \\
& =\alpha^{3+1}=\alpha^{4} \\
& =\alpha^{4+1}=\alpha^{5} \\
& \begin{array}{l}
=\alpha^{5+1}=\alpha^{6} \\
=\alpha^{5}
\end{array} \\
& x(x)=\left\{\alpha^{-2}, \alpha^{-1}, 7, \alpha_{\uparrow}^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}
\end{aligned}
$$

For $n_{0}=0$

$$
\begin{aligned}
\text { For } \\
\begin{aligned}
y(0) & =n(-3) n(-3)+x(-2) n(-2)+x(-1) n(-1)+x(0) h(0) \\
& =\left(\alpha^{-2} \cdot 8\right)+\left(\alpha^{-1} \cdot 4\right)+(1 \times 2)+(\alpha \cdot 1) \\
& =8 \alpha^{-2}+4 \alpha^{-1}+2+\alpha \quad n(-1-k]
\end{aligned}
\end{aligned}
$$

For $n_{0}=-1$

$$
\begin{aligned}
y(-1)= & x(-3) n(-3)+ \\
& x(-2) u(-2)+ \\
& x(-1) n(-1) \\
= & \left(\alpha^{-2} \cdot 4\right)+\left(\alpha^{-1} \cdot 2\right) \\
= & 4 \alpha^{-2}+2 \alpha^{-1}+1
\end{aligned}
$$

$$
\begin{aligned}
& x(-1) n(-1) \\
= & \left(\alpha^{-2} \cdot 4\right)+\left(\alpha^{-1} \cdot 2\right)+(1 \times 1)
\end{aligned}
$$

$$
\begin{aligned}
& G(n)=2^{n} \\
& 2^{0}=1 \\
& 2^{\prime}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& n[n]=\left\{\begin{array}{l}
1,2,4,8,16\} \\
\uparrow
\end{array}\right. \\
& \uparrow \text { Replacing } n \text { with } k \\
& y\left(n_{0}\right)=\sum_{k=-\infty}^{\infty} n(k) n\left(n_{0}-k\right) \\
& n[-k]
\end{aligned}
$$

For $n_{0}=-2$

$$
\begin{aligned}
\text { For } \\
\begin{aligned}
y(-2) & =u(-3) u(-3)+u(-2) u(-2) \\
& =\left(\alpha^{-2} \cdot 2\right)+\left(\alpha^{-1} \cdot 1\right) \\
& =2 \alpha^{-2}+\alpha^{-1}
\end{aligned}
\end{aligned}
$$

For $n_{0}=-3$

$$
n[-3-k]
$$

$$
\begin{aligned}
y(-3) & =u(-3) n(-3) \\
& =\left(\alpha^{-2} \cdot 1\right) \\
& =\alpha^{-2}
\end{aligned}
$$

$$
n[c-k]
$$

For $n_{0}=1$

$$
\begin{aligned}
& \text { For } \\
& y(1)= u(-3) n(-3)+u(-2) n(-2)+ \\
& x(-1) u(-1)+u(0) u(0)+ \\
& u(1) u(1) \\
&=\left(\alpha^{-2} \cdot(6)+\left(\alpha^{-1} \cdot 8\right)+(2 \times 4)+\right. \\
&(\alpha \cdot 2)+\left(\alpha^{2} \cdot 1\right) \\
&= 16 \alpha^{-2}+8 \alpha^{-1}+4+2 \alpha+\alpha^{2}
\end{aligned}
$$

For $n_{0}=2$

$$
\begin{aligned}
& y(2)=x(-2) n(-2)+x(-1) n(-1)+ \\
& n(0) n(0)+n(1) n(1)+ \\
& n(2) n(2) \\
& =\left(\alpha^{-1} \cdot 16\right)+(2 \times 8)+(\alpha \cdot 4)+\left(\alpha^{2} \cdot 2\right)+\left(\alpha^{3} \cdot 1\right) \\
& =16 \alpha^{-1}+8+4 \alpha+2 \alpha^{2}+\alpha^{3}
\end{aligned}
$$

For $n_{0}=3$

$$
\begin{aligned}
y(3)= & (1 \times 16)+(\alpha \cdot 8)+\left(\alpha^{2} \cdot 4\right)+ \\
& \left(\alpha^{3} \cdot 2\right)+\left(\alpha^{4} \cdot 1\right) \\
= & 16+8 \alpha+4 \alpha^{2}+2 \alpha^{3}+\alpha^{4}
\end{aligned}
$$

$$
n[3-k]
$$

$$
\text { For } \begin{aligned}
n_{0}= & 4 \\
y(4)= & (\alpha \cdot 16)+\left(\alpha^{2} \cdot 8\right)+\left(\alpha^{3} \cdot 4\right)+ \\
& \left(\alpha^{4} \cdot 2\right)+\left(\alpha^{5} \cdot 1\right) \\
= & 16 \alpha+8 \alpha^{2}+4 \alpha^{3}+2 \alpha^{4}+\alpha^{5}
\end{aligned}
$$

For $n_{0}=5$

$$
\begin{aligned}
y(5)= & \left(\alpha^{2} \cdot(6)+\left(\alpha^{3} \cdot 8\right)+\left(\alpha^{4} \cdot 4\right)+\right. \\
& \left(\alpha^{5} \cdot 2\right)+\left(\alpha^{6} \cdot 1\right) \\
= & 16 \alpha^{2}+8 \alpha^{3}+4 \alpha^{4}+2 \alpha^{5}+\alpha^{6}
\end{aligned}
$$

$$
\text { For } \begin{aligned}
y(6)= & \left(\alpha^{3} \cdot 16\right)+\left(\alpha^{4} \cdot 8\right)+\left(\alpha^{5} \cdot 4\right)+ \\
& \left(\alpha^{6} \cdot 2\right) \\
= & 16 \alpha^{3}+8 \alpha^{4}+4 \alpha^{5}+2 \alpha^{6}
\end{aligned}
$$

For $n_{0}=6$

For $n_{0}=7$

$$
\begin{aligned}
y(7) & =\left(\alpha^{4} \cdot 16\right)+\left(\alpha^{5} \cdot 8\right)+\left(\alpha^{6} \cdot 4\right) \\
& =16 \alpha^{4}+8 \alpha^{5}+4 \alpha^{6}
\end{aligned}
$$

For $n_{0}=8$

$$
\begin{aligned}
\text { For } n_{0} & =8 \\
y(8) & =\left(\alpha^{5} \cdot 16\right)+\left(\alpha^{6}-8\right) \\
& =16 \alpha^{5}+8 \alpha^{6}
\end{aligned}
$$

For $n_{0}=9$

$$
\begin{aligned}
y(9) & =\alpha^{6} \cdot 16 \\
& =16 \alpha^{6}
\end{aligned}
$$

Ans(3)(i) $u(u)= \begin{cases}\left(\frac{1}{4}\right)^{n}, & n \geq 0 \\ \left(\frac{1}{3}\right)^{-n}, & n<0\end{cases}$
Solution:

$$
u(n)=\left(\frac{1}{4}\right)^{n}
$$

Applying Z-transform

$$
\begin{aligned}
& x(z)=\sum_{n=-\infty}^{\infty} n[n] z^{-n} \\
& x_{1}(z)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{4}\right]^{n} z^{-n} \\
& n_{1}(z)=\frac{1}{1-\frac{1}{4} z^{-1}}-(1) \quad \because|R O C 1=| z 1>\frac{1}{4}
\end{aligned}
$$

Hence;

$$
x_{2}(n)=\left(\frac{1}{3}\right)^{n}
$$

Applying Z-transform

$$
\begin{aligned}
& \text { Applying } \\
& x_{2}(Z)=\sum_{n=-\infty}^{\infty}\left(\frac{1}{3}\right)^{-n} \eta^{-n} \quad \because n<0 \\
& x_{2}(Z)=\frac{1}{1-\frac{1}{3} \eta}-(2) \quad \because(R O C|=|(1) 3
\end{aligned}
$$

Now adding equ(1) and (2)

$$
\left\{\begin{array}{l}
x[Z]=x_{1}(Z)+x_{2}(Z) \\
x[Z]=\frac{1}{1-\frac{1}{4} Z^{-1}}+\frac{1}{1-\frac{1}{3} Z}
\end{array}\right\}
$$

$$
R O C=\frac{1}{4}<|2|<3
$$

$121>\frac{1}{4}$

$\mid 21<3$

Ans (3) (ii)

$$
x(n)=\left\{\begin{array}{cl}
\left(\frac{1}{2}\right)^{n}-3^{n}, & n \geq 0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Solution:

$$
u(n)=\left(\frac{1}{2}\right)^{n}-3^{n}
$$

Now applying Z-transform

$$
\begin{aligned}
& u(z)=\sum_{n=-\infty}^{\infty} u(n) 2^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left[\left(\frac{1}{2}\right)^{n}-3^{n}\right] 2^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}-\sum_{n=-\infty}^{\infty} 3^{n} z^{-n} \\
& =\frac{z}{z-\frac{1}{2}}-\frac{z}{z-3} \quad \because \text { Taking L.C.M } \\
& =\frac{z(z-3)-\left(z-\frac{1}{2}\right) z}{\left(z-\frac{1}{2}\right)(z-3)} \\
& =\frac{z^{z^{\prime}}-3 z-z^{z^{2}}+\frac{1}{2} z}{\left(z-\frac{1}{2}\right)(z-3)} \\
& =\frac{\frac{-6+1}{2} z}{\left(z-\frac{1}{2}\right)(z-3)} \\
& =\frac{-\frac{5}{2} z}{\left(z-\frac{1}{2}\right)(z-3)} \quad \because R O C=121>3
\end{aligned}
$$

Page-19

$$
R O C=
$$

$$
|2|>3
$$

