		Department of Electrical Engineering Assignment Date: 20/04/2020 Course Details				
		Course Title: Instructor:	Instrumentation and Measurement SIR WALEED JAN	Module: — 6 th (B Total <u>30</u> Marks:	E)	
			Student Details			
		Name:	FAWAD AHMAD	Student ID:1423	1	
Q1.	(a)	A student mistakenly connects an ammeter in parallel in a circuit. What will happen? Explain briefly.			Marks 05 CLO 2	
		ANS. An ic ammeter has as we know of current w can damage Therefore connecting parallel.	he other hand a non ideal ect an ammeter in parallel, nce path, maximum amount a turn will burn the fuse or portant precautions while in series and voltmeter in			
	(b)	A student mistakenly connects a voltmeter in series in a circuit. What will happen? Explain briefly.		Marks 05		
		ANS. An id the current. Voltmeter is in parallel ci An ideal vol So when we resistance an terminals.	leal voltmeter has infinite resistance. So arranged in parallel. But current choose ircuit. Itmeter draws 0 current from the circuit. arrange it in series it doesn't work as a nd also the reading shown by the voltme	it's clear that it will block e a path of low resistance voltmeter but as a eter is the voltage across its	CLO 2	
		So by know	ing resistance of voltmeter and emf of se	ource we can easily		

		calculate the unknown resistance of series circuit.		
	(9)	Random error cannot be easily reduced in measurements. Justify this		
02.	(a)	statement.		
x			CLO 1	
		ANS. Random error in experimental measurements is caused by unknown and		
		unpredictable changes in the experiment. These changes may occur in the		
		measuring instruments or in the environmental conditions.		
		Examples of causes of random errors are:		
		 Irregular changes in the heat loss rate from a solar collector due to 		
		changes in the wind.		
		Random errors often have a Gaussian normal distribution. In such		
		cases statistical methods may be used to analyze the data. The		
		mean m of a number of measurements of the same quantity is the		
		best estimate of that quantity, and the standard error of the		
		estimate. The standard error of the estimate m is s/square (n), where n is the number of measurements		
		where it is the number of measurements.		
	(b)	What are the different reasons due to which gross error occurs in measurement? Explain briefly.		
		ANS. Gross errors are caused by mistake in using instruments or meters, calculating measurement and recording data results. The best example of these errors is a person or operator reading pressure gage 1.01N/m2 as 1.10N/m2. It may be due to the person bad habit of not properly remembering data at the time of taking down reading, writing and calculating, and then presenting the wrong data at a later time. This may be the reason for gross errors in the reported data, and such errors may end up in calculation of the final results, thus deviating results.		
Q3.	(a)	What will happen if a spring in not connected with the coil of a moving coil galvanometer? Explain briefly.		
		ANS. If a spring is not connected with the coil of a moving coil galvanometer then they will not provide the restoring force that pushes the pointer back to zero. It is the hair springs that make the deflection proportional to the force. And since the force is proportional to the current, it permits us to draw an analogue scalevunder the pointer and measure the current.	CLO 2	

(b)	A student is performing an experiment in the laboratory during which he finds	Marks 05	
	out that the measuring instrument is giving a Full Scale Deflection for a		
	current of 10 μ A. He wants to measure a voltage of 20V with the help of this	CLO 02	
	measuring instrument. Now, What should be the appropriate value of the		
	resistor to be added with this instrument so that it can measure up to 20V?		
	Moreover, should the resistor be connected in series or parallel with this		
	instrument?		
	ANS. Given Data:		
	V=20v		
	I=10*10 ⁻⁶		
	Find:		
	R=?		
	Solution:		
	We know that		
	V=ig*(G+R)		
	V=Maximum Potential Difference		
	G= Resistance of Galvanometer		
	R=High value of Resistance		
	ig=current through Galvanometer		
	v/ig=G+R		
	v/ig-G=R		
	$R=20/10*10^{-0}$		
	R=20/10*0.000001		
	R=2000000		
	R=2*10°		
	R=2mega		