	Department of Electrical Assignment B.tech(E) Date: 14/04/20	Engineering	
	Course Detail	<u>s</u>	
Course Title: Instructor:	Electromagnetic Fields Engr. Perniya akram	Module: Total Marks:	4th 30
	Student Details		
Name:	AZHAD NIAZ	Student ID:	15493

Q1.	(a)	State the relationship between potential and electric field intensity with relevant example.	Marks 5
	(b)	Consider a point A(1,-2,2), Find a unit vector extending from point A.	Marks 5
Q2.	(a)	Three charged particles are arranged in a line as shown in figure below. Charge A = -3 μ C, charge B = +8 μ C and charge C = -9 μ C. Calculate the net electrostatic force on particle B due to the other two charges. \bigcirc	Marks 10
Q3.	(a)	 a) A uniform electric field E = 6000 N/C passing through a flat square area A = 10 m². Determine the electric flux. 	Marks 5
	(b)	'Electric flux density is a function of charge', Comment how and explain the effect of charge on flux density.	Marks 5

Name:	AZHAD NIAZ	Student ID:	15493

Q1 (a): State the relationship between potential and electric field intensity with relevant example.

ANS: (a)

RELATIONSHIP BETWEEN POTENTIAL & ELECTRIC FIELD INTENSITY

POTENTIAL	ELECTRIC FIELD INTENSITY
Electric potential is defined as amount	Electric field is defined as amount force
of energy or work per charge.	per charge
It is measured in volts or joules per	It is measured in Newton per coulomb
coulomb	Or volt per meter
It is scalar quantity	It is vector quantity
It is the negative rate of derivative of	It is equal to the negative rate of charge
potential difference	of potential
$V(\mathbf{r}) = \frac{q1}{4\pi e_0 (r-r1)}$	Formula = E =K*Q/d^2

EXAMPLE OF POTENTIAL: magnetic and gravitational field are examples

EXAMPLE OF ELECTRIC FIELD: Light X RAYS, radio waves, microwaves,

Name:	AZHAD NIAZ	Student ID:	15493

Q1; (b) Consider a point A (1,-2, 2), Find a unit vector extending from point A.

Solution:

Let suppose

A = 1ax - 2ay - 2az

$$[A] = \sqrt{(1)^2 + (-2)^2 + (-2)^2}$$

Magnitude of A

$$=\sqrt{1+4+4}$$
$$=\sqrt{9}=3$$

Find unit vector

$$aA = \frac{A}{|A|} = \frac{ax - 2ay - 2az}{3}$$
$$= \frac{1}{3}ax - \frac{2}{3}ay \frac{2}{3}az$$
$$aA = 0.333ax - 0.666ay - 0.666az..$$

Q2; Three charged particles are arranged in a line as shown in figure below. Charge $A = -3 \mu C$, charge $B = +8 \mu C$ and charge $C = -9\mu C$. Calculate the net electrostatic force on particle B due to the other two charges.

Name:	AZHAD NIAZ	Student ID:	15493

ANS:

SOLUTION:

Given data:

Charge A = QA = -3μ C = -3×10^{-6} c Charge B QB = 8μ C = 8×10^{-6} C Charge C = QC = -9μ C = -9×10^{-6} C

Required:

The magnitude and the direction of net electromagnetic force on particles B The force exerted on particle B by particle A.

$$F_{AB} = k \frac{qA qB}{rAB}$$

$$F_{AB} = 9 \times 10^9 \frac{-3 \times 10^{-6} (8 \times 10^{-6})}{(6 \times 10^{-2})^2)}$$

$$= \frac{9 \times 10^9 (-24 \times 10^{-12})}{36 \times 10^{-4}}$$

$$F_{AB} = \frac{-216 \times 10^{-3}}{36 \times 10^{-4}}$$

$$F_{AB} = -6 \times 10^{-3} \times 10^4$$

$$F_{AB} = -6 \times 10^1$$

$$= -60 \text{ NEWTON}$$

The direction of the electrostatic force points to particles A point left the force FBc exerted on particle B by A

Name:	AZHAD NIAZ	Student ID:	15493

ANS 2:

$$F_{Bc} = k \frac{qb qc}{rBc}$$

$$F_{Bc} = 9 \times 10^{9} \frac{8 \times 10^{-6} (-9 \times 10^{-6})}{(4 \times 10^{-2})^{2}}$$

$$F_{Bc} = \frac{9 \times 10^{9} (-72 \times 10^{-12})}{16 \times 10^{-4}}$$

$$F_{Bc} = \frac{-648 \times 10^{-3}}{16 \times 10^{-4}}$$

$$F_{Bc} = -40.5 \times 10^{-3} \times 10^{4}$$

$$F_{Bc} = -40.5 \times 10^{1}$$

$$F_{Bc} = -405$$
Newton
The net electrostatics force on particles B

Fb = Fab - Fbc =

(-60) - (-405) = 345 Newton

Q3: (a) A uniform electric field E = 6000 N/C passing through a flat square area A = 10 m². Determine the electric flux.

Name:	AZHAD NIAZ	Student ID:	15493

ANS 3: (a)

Solution:

Given data: E = 6000 N/C

 $A = 10m^2$

Formula: $\Phi_c = EA \cos\theta$

 Φ = electric flux (Nm^2/C),

E = electric field (N/C)

A = Area (m^2) ,

 θ = angle between electric field

We know that

 $\Phi c = EA \cos \theta$

Putting values in formula

 $\Phi_{\rm c} = (6000) (10) (\cos \theta) =$ = (6000) (10) (1) $= 6 \times 10^4 \text{ N}m^2/\text{C}$

Q3 (b); Electric flux density is a function of charge', Comment how and explain the effect of charge on flux density.

Name:	AZHAD NIAZ	Student ID:	15493

ANS 3: (b)

ELECTRIC FLUX DENSITY:

Electric flux density assigned the symbol D, is an alternative electric field intensity E as way to the electric field.

Simply it can define as the measure of strength of an electric field generated by free electric charge.

Particles having charge q give rise to the electric field intensity

It is measured in coulombs $Q = \Psi$

$$E = R^{\wedge} q \frac{1}{4\pi R^2} = \frac{1}{E}$$

Where R is the distance from charge R[^] point away from the charge.

E is inversely proportional to $4\pi R^2$, indicating the E decreases in proportional to the area of sphere surrounding the charge

Q is the charge of the body

As the number of electric lines of force emanated from a charge body is equal to the quantity of charge body is equal to the quantity of charge of the body measured in coulombs we can also define the electric flux density at any point in the electric field of the body as the number of lines of force passing through a unit surface area at that point

EFFECT OF CHARGE:

With the increase of charge electric flux density will increase

Because due to force on it.

It is out close surface and depended only on charge enclosed.