INU
IQRA NATIONAL UNIVERSITY
Name : Hameed Khan
Department : BS(CS)
Semester : 4th
ID # : 15066
Assignment : Mid Term
Subject : Data Communication
And Network
Submitted To :Ghassan Husnain Sir

Ans:

One way to describe this system might be to describe the series of actions you take (or others take for you) when you fly on an airline. You purchase your ticket, check your bags, go to the gate, and eventually get loaded onto the plane. The plane takes off and is routed to its destination. After your plane lands, you deplane at the gate and claim your bags. If the trip was bad, you complain about the flight to the ticket agent (getting nothing for your effort).

Already, we can see some analogies here with computer networking: You are being shipped from source to destination by the airline; a packet is shipped from source host to destination host in the Internet. In a horizontal manner the above figure can be shown as;

Q2:

Ans:

Advantages:

1. By combining these layers the functionality is performed by a single layer and overhead is reduced.

2. Higher Bandwidth as number of layers is reduced.

3. It reflects the real-life separation of application from the TCP-downward sections of the OSI model.

Disadvantages:

1. More functions need to be performed by single layer.

D

2. Can make reasoning about the architecture of network systems less effective.

m

3. There will be security issues as the Network security and Application Security will open at a single point which may expose our network open to our threat.

Q3:

Ans: Computer A:

Contents of segment at Transport layer; Data Header

Contents of Packet at Network layer;

A	D	Data	Header						
Contents of Frame at Data Link layer;									

n

Data

H2

T2

Computer D:

4240

Contents of segment at Transport layer;

Data Header

Α

Contents of Packet at Network layer;

	A	D	Data		Header	Header		
	Contanta of Frame of Dat							
ļ	8082 A	D m	n	Data	H2	T2		
	Q4: Ans: a. Solution:			Data	112	12]	
$SNR(dB) = 10 * log_{10}(SNR) SNR = 10_{(SNR(dB)/10)}$ $SNR = 10_{(30/10)} SNR = 10_3 = 1000$ As we know that; Capacity = bandwidth * log_2(1 + SNR) Capacity = 15 KHz * log_2(1 + 1000) Capacity = 15 KHz * log_2(1001) Capacity = 15 KHz * 9.97 Capacity = 149.55 Kbps b. Solution:								
$SNR(dB) = 10 * log_{10}(SNR) SNR = 10_{(SNR(dB)/10)}$ $SNR = 10_{(2/10)} SNR = 10_{0.2} = 1.6$ As we know that; Capacity = bandwidth * log_2(1 + SNR) Capacity = 100 KHz * log_2(1 + 1.6) Capacity = 100 KHz * log_2(2.6) Capacity = 100 KHz * 1.38 Capacity = 138 Kbps c. Solution:								
	$SNR(dB) = 10 * log_{10}(SNISNR = 10_{(10/10)} SNR = 10_{10}As we know that;Capacity = bandwidth * logCapacity = 0.5 MHz * logCapacity = 0.5 MHz * logCapacity = 0.5 MHz * 3.44Capacity = 1.73 Mbps$	R) SNR = $10_{(SNR(dB)/10)}$ 1 = 10 $pg_2(1 + SNR)$ $pg_2(1 + 10)$ $pg_2(1 + 10)$ $pg_2($						
	Q5: Ans: Solution: Using Nyquist's equation: We have $C = 4800$ bps log2M = 8, because a sig 16B = 4800 and we have $B = 300$ Hz	: C = 2 * B * log2M. nal element encodes a	a 4-bit word. (So	o, actually M=	256).			
	Q6: Ans: Solution: Here number of bits = 8 b So; Bit rate = 8 bit/8 ns Bit rate = 1 bit/ns Bit rate = 1 * 10 ₉ bit/sec Bit rate = 1 Gbit/sec	bit, and Bit Duration = 8	3 ns					
	Q7: Ans: Solution:							

As we know that; Capacity = bandwidth * $log_2(1 + SNR)$ Here Capacity = 40 Mbps, and bandwidth = 6 MHz, putting in above equation; 40 Mbps = 6 MHz * $log_2(1 + SNR)$ 40 * 10₆ bps = 6 * 10₆ Hz * $log_2(1 + SNR)$ $log_2(1 + SNR) = 40/6$ $log_2(1 + SNR) = 6.67$ 1 + SNR = 26.67 1 + SNR = 102 SNR = 101

Q8: Ans: Solution: Frequencies = 20 to 40 KHz So Bandwidth = 40 KHz – 20 KHz Bandwidth = 20 KHz Amplitude = 10 V for the lowest and the highest signals, 30 V for the 30 KHz. Frequency Spectrum:

