Saira Hassan – 15315

<u>(INU)</u>

Answer No:01

<u>Law of Bergonie and Tribondeau: -</u>

The law of Bergonie and Tribondeau states that: -

- The radio sensitivity of a biological tissue is directly proportional to the mitotic activity and inversely proportional to the degree of differentiation of its cells.
- This law underpins the field of radiation-oncology, although such a general law may not apply in all cases.

Factors affecting radio sensitivity: -

- i. LET (Linear energy Transfer): **1**RS
- ii. Dose rate: **1**RS
- iii. Temperature: **T**RS
- iv. Age
- v. Metabolic rate
- vi. Oxygen effect

Answer No: - 02

<mark>Short Notes</mark>: -

- 1) Effect of irradiation of macromolecules: -
 - In the dry or frozen states, macromolecules are damaged directly by interactions with ionizing radiation.
 - Since y-rays and high-energy electrons randomly ionize orbital electrons in their path, larger molecules are more likely to suffer an interaction with these radiations.
 - In each interaction, energy is transferred to the struck molecule, resulting in irreversibly broken covalent bonds.

2) Radiolysis of water: -

- It is the dissociation of molecules by ionizing radiations.
- Water dissociates under alpha radiation into a hydrogen radical and a hydroxyl radical, unlike ionization of water which produces a hydrogen ion and a hydroxide ion.
- Water when exposed to radiation, water undergoes a breakdown sequence into hydrogen peroxide, hydrogen radicals, and the assorted oxygen compounds, such as ozone, which when converted back into oxygen releases great amounts of energy.

3) Effect of radiation on cell: -

- The radiation may alter the cell DNA.
- Radiations lead to cancer of the cells.
- It causes suppression of the mitosis.
- Further leads to:
 - i. The main chain scission:-

It is the breakage of the backbone of the long chain macromolecule. The result is the reduction of a long, single molecule into many smaller molecules, each of which may still be macromolecular.

ii. <u>Cross linking</u>:-

Some macromolecules have small, spur like structures that extend off the main chain. Others produce these Spurs as a consequence of irradiation. This side structures can behave is the head a sticky substance on the end, and they attached to a neighboring macromolecule are to another segment of the same molecule. This process is crosslinking.

- iii. <u>Disruption of single chemical bonds, causing point lesions</u>:-Radiation interaction with macromolecules also can result in disruption of single chemical bonds, producing. Legends. Legends are not detectable, but they can cause a minor modification of the molecule, which in turn can cause it to malfunction within the cell.
- iv. Genetic damage.
- v. Malignancy of specific tissue, like breast cancer etc.
- vi. Can cause infertility as gonads are radiosensitive.

4) Fractionation and Protraction: -

- i. Fractionation: -
 - The method to reduce patient exposure, in which we give high dose but with breaks in between the doses.
- ii. <u>Protraction</u>: -
 - The method to reduce patient exposure, in which we give the dose continuously but the dose given is low.

<u> Answer No: - 03</u>

Effects of radiation on human body: -

- After radiation exposure, the human body response in predictable ways.
- If the intensity of the response increases with increasing radiation dose it is called a deterministic response and occurs within days of exposure.
- If the frequency of an injury increases with increasing radiation dose, it is called a stochastic effect and is not observable for years.
- Most patients who do not recover will die within a few to several months after exposure.

- There are, in fact, three separate syndromes that are related and that follow are rather distinct course of clinical responses.
 - 1) Hematologic death: -
 - Symptoms i.e. nausea, vomiting and diarrhea develops, with time of onset from later than 1 hour to about 24 hours after exposure and may persist for several days.

2) Gastrointestinal death: -

- depletion of the epithelial cells lining lumen of the GI tract.
- Intestinal bacteria gain free access to the body.
- Hemorrhage through denuded areas.
- Loss of absorption capacity.

3) Central nervous system death: -

- Nausea, vomiting and burning sensation in the skin within a few minutes of exposure.
- The patient become nervous and confused with loss of vision, balance and consciousness within the first hour.
- Central nervous system syndrome is characterized by raised intracranial pressure, vasculitis and meningitis.

Further complications of radiation exposure on human body includes

- Damage to the skin.
- Hair loss
- Dry desquamation.
- Moist desquamation.
- Blister formation.
- Ulceration.
- Necrosis.
- It also affects the gonads.

- It affects the hematopoietic system.
- It also has cytogenetic effects.
- Chromosome aberrations i.e. single heat and multi heat chromosome aberrations.
- Reciprocal translocation.

Etc. etc.