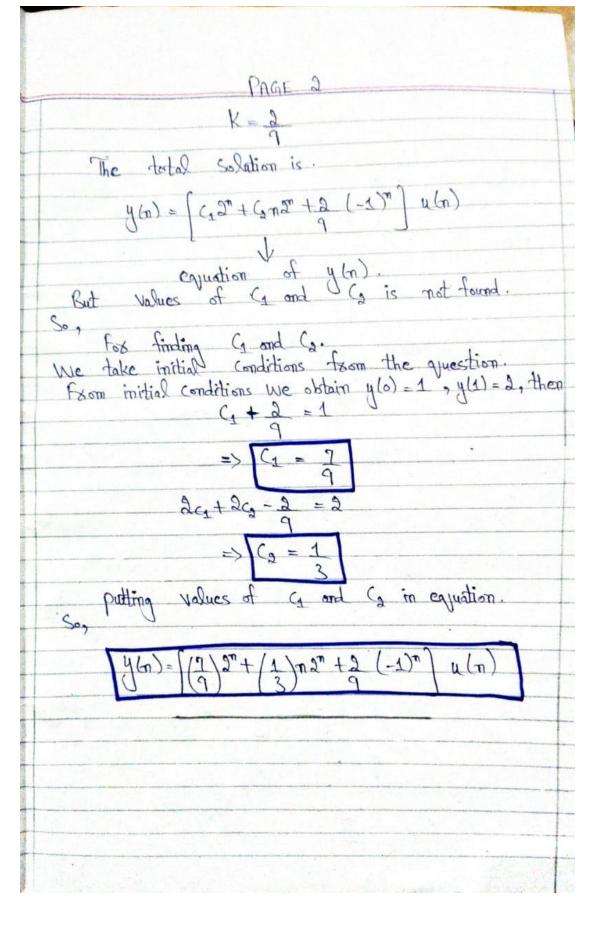
Department of Electrical Engineering Final Exam Assignment

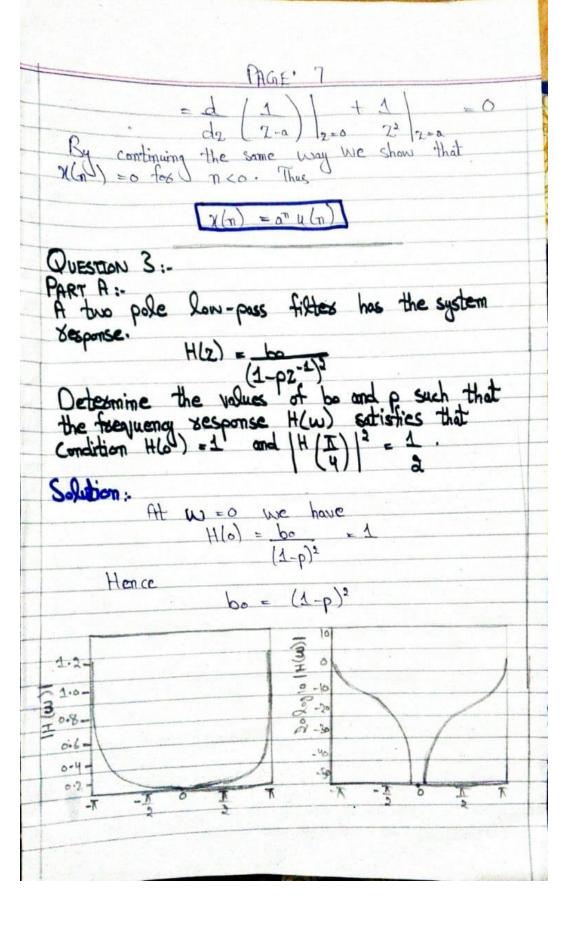
Date: 27/06/2020

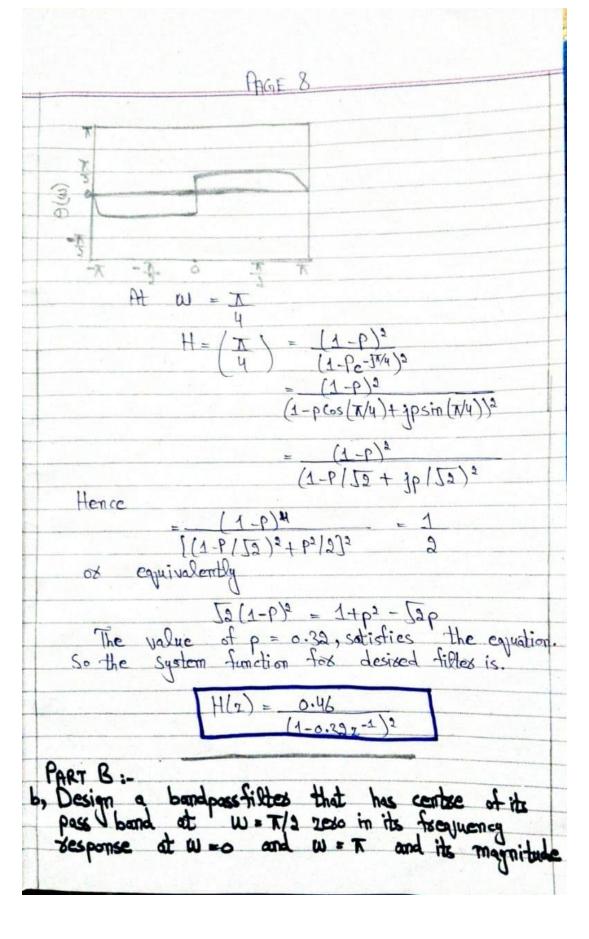
Course Details

Course Title: Digital Signal Processing Module: 6th

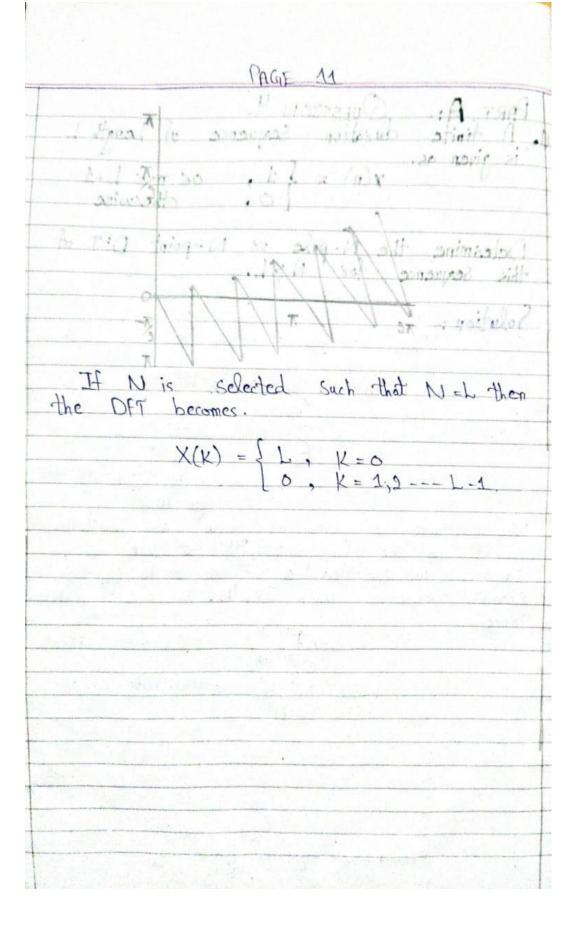

Instructor: Sir Pir Mehar Total Marks: _____50

Student Details


Name: Rimsha Khan Student ID: 13672


	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order difference	
		equation	Marks
			7
		y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)	
			CLO
		To the input $x(n) = (-1)^n u(n)$. And the initial conditions are $y(-1) = y(-2) = 0$.	2
Q1.	(b)	Determine the impulse response and unit step response of the systems described by the	Marks
		difference equation.	7
			CLO
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)	2
		Determine the causal signal x(n) having the z-transform	
			Marks
	(a)	$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	6
		$\chi(z) = (1 - 2z^{-1})(1 - z^{-1})^2$	CLO
			2
Q2.		(Hint: Take inverse z-transform using partial fraction method)	
			Marks
		Evaluate the inverse z- transform using the complex inversion integral	6
	(b)		
		$X(z) = \frac{1}{1 - az^{-1}} \qquad z > a $	CLO
		$X(z) = 1 - az^{-1}$ $ z > a $	2

		A two- pole low pass filter has the system response	Marks 6
Q.3	(a)	b_o	
		$H(z) = \underline{\hspace{1cm}} -1)^2$	CLO
		(1-pz)	3
		Determine the values of b_0 and p such that the frequency response $H(\omega)$ satisfies the	
		condition $H(0) = 1$ and $ H(\pi) ^2 = 1$.	
		4 2	
			Marks
	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in	6
		its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in	CLO
		$\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$.	3
		V2 de 65 1747 5 .	Marks
	(a)	A finite duration sequence of Length L is given as	6
			CLO
		$1, 0 \le n \le L - 1$	2
		$1, 0 \le n \le L - 1$ $x(n) = \{$ $0, otherwise$	
		,	
		Determine the N- point DFT of this sequence for $N \ge L$	
Q 4			
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 6
		$x_1(n) = \{2\uparrow, 1, 2, 1\}$	CLO 2
		$x_2(n) = \{ 1 \uparrow, 2, 3, 4 \}$	



,	PART B:- Evaluate the invesse 2-transform using the complex invession integral?
	$X(z) = \frac{1}{1 - \alpha z^{-1}}$ 2 > a
	Solution:
	We have $\chi(n) = 1$ for 2^{n-1} dz = 1 for 2^n dz. $\chi(n) = 1$ for 2^{n-1} dz = 1 for 2^n dz. Where C is the circle at xodius greater than C and C with C and C with C and C are C with C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C are C are C and C are C are C are C and C are C are C are C and C are C are C are C and C are C are C are C and C are C are C are C are C and C are
	If $n > 0$, $f(2)$ has only zeros and hence no poles inside (. The only pole inside (is $Z = a$. Hence $\chi(n) = f(\chi_0) = \tilde{a}^n$ $n > 0$
	If n < 0, f(z) = 2" has an nith order pole at 2=0, which is also inside C. Thus there are contribations from both places or poles. For n = 1 we have. 2 (-1) = 1 & 1 d2
	$= \frac{1}{1 - a} \begin{vmatrix} + 1 \\ -2 \end{vmatrix} = 0$ If $n = -2$ we have.
	$\chi(-2) = 1 \int_{2\pi/2} \frac{1}{\sqrt{2(2-a)}} dz$

1+0-77-2

	PAGE 12
6	QUESTION 4:- PART B:- PART B:- PESTORM The Circular convolution of the following two Sequencies. Solve the problem Step by step. X4(n) = [2, 1, 2, 1]
1	$\chi_{1(n)} = \left\{\frac{9}{1}, 1, 2, 1\right\}$
-	X2(m) = \{1, 2, 3, 4\}
-	Solution
	Points. Now Xz(m) is obtained by ciscularly Convolving Xz(n) with xz(n) as Specified by. Beginning with m = 0 we have. Xz(o) = Z xz(n)xz((n))N
	Beginning with $m = 0$ We have $\chi_3(a) = \frac{2}{2} \chi_1(n) \chi_2((n)) N$
	X2((-n))4 is simply the sequence x3(n) tolded and
	The product sequence is obtained by
	multiplying Man the values in product Sequence to
100	oktain. (x, (a) = 14
000	Fox $m=1$ we have $\chi_3(1) = \frac{3}{2} \chi_1(n) \chi_2(1-n) q$
	Now again Sum the product values we get. $X_2(1) = 16$
-	Now for $n=2$ we have. $\chi_3(2) = \frac{2}{2} \chi_1(n)\chi_2((2-n))_q$
	N=0