
NAME = AHMAD ULLAH KHAN

ID = 6958

SEMESTER = 4TH

DATE = 23/09/2020

Q1. a. What is decision making in C # explain with the help of flow
charts?

Ans:

These types of statements are used by programmers to determine one
or more conditions evaluated by the program at run-time. Specific
blocks of code associated with these statements will be executed only
when the condition is determined.

The flowchart of the Decision-making technique in C can be expressed
as:

If the boolean expression evaluates to true, then the block of code
inside the if statement is executed. If boolean expression evaluates to
false, then the first set of code after the end of the if statement(after
the closing curly brace) is executed.

. b: Write a program in C # in which different genders are to be separated based
on user input?

using System;

class Program

{

 static void Main(string[] args)

 {

 char gender;

 Console.WriteLine("Enter gender (M/m or F/f): ");

 gender = Convert.ToChar(Console.ReadLine());

 switch (gender)

 {

 case 'M':

 case 'm': Console.WriteLine("MALE");

 break;

 case 'F':

 case 'f': Console.WriteLine("FEMALE");

 break;

 default: Console.WriteLine("Unspecified Gender");

 break;

 }

 Console.ReadLine();

 }

}

Q2. a. What is the role of “If else if” in decision making explain with
the help of a flow chart ?
Ans:
The if-else-if statement executes one condition from multiple
statements. The execution starts from top and checked for each if
condition. The statement of if block will be executed which evaluates to
be true. If none of the if condition evaluates to be true then the last
else block is evaluated.
Testing a condition is inevitable in programming. We will often face

situations where we need to test conditions (whether it is true or false)

to control the flow of program. These conditions may be affected by
user's input, time factor, current environment where the program is
running, etc.

 b. Write a program in C # in which different weather conditions are
 mentioned?

using System;

namespace DecisionMaking {
 class Program {
 static void Main(string[] args) {

 int a = 45;

 if (a == 35) {
 Console.WriteLine("today weather 35C");

 }
 else if (a == 40) {
 Console.WriteLine("today weather 40C");
 }
 else if (a == 45) {
 Console.WriteLine("today weather 45C");
 } else {
 Console.WriteLine("None of the values is matching");
 }
 Console.WriteLine("Exact value of a is: {0}", a);
 Console.ReadLine();
 } }}

Output

today weather 45C

Exact value of a is: 45

Q3. a. What is the role of Loops in C# explain with the help of a flow
chart?

Ans: Looping in a programming language is a way to execute a
statement or a set of statements multiple times depending on the
result of the condition to be evaluated to execute statements. The
result condition should be true to execute statements within loops.This
loop allows using three statements, first is the counter initialization,
next is the condition to check it and then there is an
increment/decrement operation to change the counter variable. You
will understand it once we see some programs.

Flow chart

 b. How many loops are supported by C #, give separate example for
each loop?

Ans:

they come in 4 different variants, are supported by c#

while loop

The while loop is probably the most simple one, so we will start with
that. The while loop simply executes a block of code as long as the
condition you give it is true. A small example, and then some more
explanation:

using System;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 int number = 0;

 while(number < 5)
 {
 Console.WriteLine(number);
 number = number + 1;
 }

 Console.ReadLine();
 }
 }
}

The do loop

The opposite is true for the do loop, which works like the while loop in
other aspects through. The do loop evaluates the condition after the
loop has executed, which makes sure that the code block is always
executed at least once.

using System;

public class Program

{

 public static void Main()

 {

 int i = 0;

 do

 {

 Console.WriteLine("i = {0}", i);

 i++;

 if (i > 5)

 break;

 } while (i < 10);

 }

}

The for loop

The for loop is a bit different. It's preferred when you know how many
iterations you want, either because you know the exact amount of
iterations, or because you have a variable containing the amount. Here
is an example of the for loop.

using System;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {

 int number = 5;

 for(int i = 0; i < number; i++)
 Console.WriteLine(i);

 Console.ReadLine();
 }
 }
}

The foreach loop

The last loop we will look at, is the foreach loop. It operates on
collections of items, for instance arrays or other built-in list types. In
our example we will use one of the simple lists, called an ArrayList

using System;
using System.Collections;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 ArrayList list = new ArrayList();
 list.Add("John Doe");
 list.Add("Jane Doe");
 list.Add("Someone Else");

 foreach(string name in list)
 Console.WriteLine(name);

 Console.ReadLine();
 }
 }
}

Q4. Why do the developers prefer for loops instead other loops justify
your answer with the help of an C # coded program ?
Ans:
A for loop is intended to iterating over a range or collection. It's
implicitly a traversal of a set, with defined beginning and end points. In
ordinary usage it's going to end without explicit user intervention,
although it's explicit breakouts or skips can be added
with break, continue or similar instructions. From a logic and code-flow
standpoint, a for loop is about dealing with repetitive data. "Do this to
every item in this list" or "Collect the data from every one of these
records".

A other loops, on the other hand, is about program state, not about the
data. It's generally used for putting the program into a mode and
keeping it their until some condition triggers a mode switch: lots of
servers are written inside a single loop.

using System;

namespace MyApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 for (int i = 0; i <= 10; i = i + 2)
 {
 Console.WriteLine(i);
 }
 }
 }
}

Q5. a. What is encapsulation and its role in object oriented
programming ?

In object-oriented computer programming languages, the notion of
encapsulation refers to the bundling of data, along with the methods
that operate on that data, into a single unit. Many programming
languages use encapsulation frequently in the form of classes. A class is
a program-code-template that allows developers to create an object
that has both variables (data) and behaviors (functions or methods). A
class is an example of encapsulation in that it consists of data and
methods that have been bundled into a single unit.

Encapsulation may also refer to a mechanism of restricting the direct
access to some components of an object, such that users cannot access
state values for all of the variables of a particular object. Encapsulation
can be used to hide both data members and data functions or methods
associated with an instantiated class or object.

Encapsulation is one of the fundamental concepts in object-oriented
programming (OOP). It describes the idea of bundling data and
methods that work on that data within one unit, e.g., a class in Java.

This concept is also often used to hide the internal representation, or
state, of an object from the outside. This is called information hiding.
The general idea of this mechanism is simple. If you have an attribute
that is not visible from the outside of an object, and bundle it with
methods that provide read or write access to it, then you can hide
specific information and control access to the internal state of the
object.

Access Modifiers

Java supports four access modifiers that you can use to define the
visibility of classes, methods, and attributes.

These modifiers are, starting from the most to the least restrictive one:

 private

https://stackify.com/oops-concepts-in-java/
https://stackify.com/oops-concepts-in-java/
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)#An_information-hiding_mechanism
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

 no modifier
 protected
 public

Private

This is the most restrictive and most commonly used access modifier. If
you use the private modifier with an attribute or method, it can only be
accessed within the same class. Subclasses or any other classes within
the same or a different package can’t access this attribute or method.

No modifier

When you don’t provide any access modifier for your attribute or
method, you can access it within your class and from all classes within
the same package. That’s why it’s often called package-private.

Protected

Attributes and methods with the access modifier protected can be
accessed within your class, by all classes within the same package, and
by all subclasses within the same or other packages.

Public

This is the least restrictive access modifier. Methods and attributes that
use the public modifier can be accessed within your current class and
by all other classes.

