NAME: M.NAEEM:
ID \#: 14146
ASSIGNMENT. THEORY OF AUTOMATA.

Q 1) Keeping in the view the Kleens theorem. Proof for any language S.
$\mathbf{S}^{+}=\left(\mathbf{S}^{+}\right)^{+}$.
$S=(a b)$
$S=(a b$ aa $a b b b$ ba aaa $a a b$ aba $a b b$ bbb bba bab baa)
$S^{+}=(a b$ aa $a b b b$ ba aaa aab aba abb bbb bba bab baa)
$\left(S^{+}\right)^{+}=(a \operatorname{b}$ aa $a b$ bb ba aaa aab aba abb bbb bba bab baa)
Here the $\left(\mathrm{S}^{+}\right)^{+}$gives all those strings which are gained by the concatenation of the strings of S^{+}. So it is proved that $\mathrm{S}^{+=}\left(\mathrm{S}^{+}\right)^{+}$.

Q2) How many words does S^{*} will have the of length 3,4 and 5 . If $S=(a b b a)$
Design S^{*} and then write answer on the basis of words of S^{*}.
$S=\{a b b a\}$
Here we have 2 words In the language S. So the total number of words of length $=n=2$
So total words of length $2=2^{2}=4$
total words of length $3=2^{3}=8$
total words of length $2=2^{4}=16$
Now we will design S* for the length of 345
$S^{*}=\{/ \backslash \mathrm{ab}$ ba abab abba baba baab ababab ababba abbaab abbaba bababa babaab baabba baabab abababab Babababa.... \}

SO, Total words of length $3=0$.

Total words of length $4=4$.
Total words of length 5=0.

Q3) Fill in the blanks.

1. A dictionary is arranged in ALPHABATIC order.
2. + Is called 1/MORE instances
3. * Is called 0/MORE instances
4. ? Is called $\mathbf{0 / 1}$ instances
5. A formal language is a game of SYMBOLS on paper.
6. \triangle is included in KLEEN STAR closure.
7. DAD Is a word whose reverse is equal to itself.
8. CONCATENATION Is an operation in which symbols are placed side by side.
9. $\{a \mathrm{~b}\}=\{\mathrm{b} a\} f o r$ REVERSE operation.
10. Two words having same symbols in same order called LEXICOGRAPHIC words.
