Assignment

Date:20/4/2020

Course Code: Prerequisite: Module:	MTH 102				Course Title: Instructor:		Calculus and analytic geometry
							HIMAYATULLAH
	3	Program:	BEE		Marks:	30	

NAME: HASEEB ULLAH
ID \#: 16314

Question No 1
Part (a)
Identify $\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$
Solution

$$
\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}
$$

Applying limit.

$$
\begin{aligned}
& =\frac{\sqrt{2+0}-\sqrt{2}}{0} \\
& =\frac{\sqrt{2}-\sqrt{2}}{0} \\
& =\frac{D}{0}
\end{aligned}
$$

So we find.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}
$$

ring and $\div \sqrt{2+h}+\sqrt{2}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h} \times \frac{\sqrt{2+h}+\sqrt{2}}{\sqrt{2+h}+\sqrt{2}} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{2+h}-\sqrt{2})(\sqrt{2+h}+\sqrt{2})}{(h)(\sqrt{2+h}+\sqrt{2})} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{2+h})^{2}-(\sqrt{2})^{2}}{(h)(\sqrt{2+h}+\sqrt{2})} \quad \rightarrow \text { So sauce and } r \\
& \text { cut each other : }
\end{aligned}
$$

Apply desivatries.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right) \\
& =\left(x+x^{-1}\right) \frac{d}{d x}\left(x-x^{-1}+1\right)+\left(x-x^{-1}+1\right) \frac{d}{d x}\left(x+x^{-1}\right) \\
& =\left(x+x^{-1}\right)\left(1+x^{-2}\right)+\left(x-x^{-1} 1\right)\left(1-x^{2}\right) \\
& =\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x^{2}}\right)+\left(x-\frac{1}{x}\right)\left(1-\frac{1}{x^{2}}\right) \\
& =x+x \frac{1}{x^{2}}+\frac{1}{x}+\frac{1}{x^{3}}+x-x \frac{1}{x^{2}}-\frac{1}{x}+\frac{1}{x^{3}}+1-\frac{1}{x^{2}} \\
& =2 x+1-\frac{1}{x^{2}}+\frac{1}{x^{3}} \quad \text { A. }
\end{aligned}
$$

Question (2)
Part A:.

$$
S=160 t-16 t^{2} \mathrm{ft}
$$

Solution

$$
S=160 t-16 t^{2} f t
$$

a)
velocity is

$$
\begin{aligned}
& v=\frac{d s}{d t} \\
& \frac{d}{d t}\left(160 t-16 t^{2}\right) \\
& v=160-32 t
\end{aligned}
$$

Part (a)
Does the curve $y=x^{4}-2 x^{2}+2$ have nay horizental tangent if So where?

Solution.

$$
y=x^{4}-2 x^{2}+2
$$

Apply derivatives on both sides

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{4}-2 x^{2}+2\right) \\
& =\frac{d}{d x} x^{4}-\frac{d}{d x} 2 x^{2}+\frac{d}{d x} 2 \\
& =4 x^{2}-4 x+0 \\
\frac{d y}{d x} & =4 x^{2}-4 x
\end{aligned}
$$

the tangent is horizental $\frac{d y}{d x}=0$
So

$$
\begin{array}{ll}
4 x^{3}-4 x=0 \\
4 x\left(x^{2}-1\right)=0 \\
4 x=0, & x^{2}-1=0 \\
x=\frac{0}{4}, & x^{2}=1 \\
x=0, & \sqrt{x^{2}}=\sqrt{1} \\
& x= \pm 1
\end{array}
$$

So

$$
x=0 \quad, x= \pm 1
$$

Corresponding point

$$
y=x^{4}-2 x^{2}+2
$$

