Course Details

$\left.\begin{array}{llll}\text { Course Title: } & \text { Thermodynamics } & \text { Module: } & 02 \\ \text { Instructor: } & \text { sirmujtaba }\end{array} \quad \begin{array}{l}\text { Total Marks: }\end{array}\right]=30$

Student Details

Name:
amjad_ali
Student ID:
16012

Q1.	(a)	Express the temperature of $139^{\circ} \mathrm{C}$ on degree Fahrenheit, Rankine and Kelvin scales.	Marks 06
			CLO 1
	(b)	Derive the equation highlighting the work done by a gas or vapour in expanding for a constant temperature process.	Marks 05
			CLO 1
Q2.		Analyze the given figure and match column 1 with the correct option of column 2.	Marks 08
			CLO 1
		Column 1 Column 2	
		Process I Adiabatic	
		Process II Isobaric	
		Process III	
		Process IV Isothermal	
Q3.	(a)	Hydrogen is compressed under a constant pressure of $5760 \mathrm{lb} / \mathrm{ft}^{2}$ until its volume is reduced from 28 to $12 \mathrm{ft}^{3}$. Calculate the work done in compressing the gas.	$\begin{array}{\|l} \hline \text { Marks } \\ 07 \\ \hline \end{array}$
			CLO 1
	(b)	Differentiate between enthalpy and entropy using examples from daily life.	Marks 04
			CLO 1

Given
Temperature $=139 \mathrm{c}^{0}$

Require
$\mathrm{F}^{0}=$?
$\mathrm{R}^{0}=$?
$\mathrm{K}^{0}=$?
Solution

Degree Fahrenheit
Formula
$\mathrm{F}^{0}=\left(1.8^{*} \mathrm{c}^{0}\right)+32$
Put the value
$\mathrm{F}^{0}=\left(1.8^{*} 139\right)+32$
$\mathrm{F}^{0}=(250.2)+32$
$\mathrm{F}^{\mathbf{0}}=\mathbf{2 8 2 . 2} \mathrm{F}^{0}$

Ran king
Formula
($\mathrm{R}^{0}=\mathrm{F}^{0}+460$)
Put the value
$\mathrm{R}^{0}=282.2+460$
$\mathbf{R}^{\mathbf{0}}=\mathbf{7 4 2 . 2} \mathbf{R}^{\mathbf{0}}$

Kelvin scales
Formula
$\mathrm{K}^{0}=\mathrm{c}^{0}+273$)
Put the value
$\mathrm{K}^{0}=139+273$
$K^{\mathbf{0}}=\mathbf{4 1 2 K}{ }^{\mathbf{0}}$

Answer 1(b):

work done by a gas or vapor in expanding:
the amount of work done by a gas or vapor in expending defend on the method by which expansion is perform .
as
$\mathrm{w}=\int \mathrm{p} \Delta \mathrm{v}$
constant temperature
$\mathrm{w}=\int_{v 1}^{v 2} \quad \mathrm{pdv}$
as $\mathrm{p} 1 \mathrm{v} 1=\mathrm{p} 2 \mathrm{v} 2=\mathrm{pv}=\mathrm{c}$
$p=c / v$
$\mathrm{w}=\int_{v 1}^{v 2} \quad \mathrm{c} / \mathrm{v} \quad \mathrm{dv}$
$=\mathrm{c} \quad \ln \mathrm{v} \int_{v 1}^{v 2}$
$=\mathrm{c} \ln (\mathrm{v} 2 / \mathrm{v} 1)$
Work $=\mathrm{p} 1 \mathrm{v} 1 \ln (\mathrm{v} 2 / \mathrm{v})$

Answer 2:

Ideal gas $e q^{n} _\mathrm{pv}=\mathrm{NRT}$
Isobaric process _ constant .P
Isochoric process _ constant .V
Isothermal process _constant .T
Adiabatic process _ no exchange of heat or mass =the great answer

Answer 3(a):
Solution:
$\mathrm{P}=7560 \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{~V} 2=28 f t^{3}$
$\mathrm{~V}=12 \mathrm{ft} \mathrm{t}^{3}$
Work don $=$?
Solution is an constant presser process work don $=(\mathrm{p}) \mathrm{v} 2-\mathrm{v} 1$
$=40 * 144(28-12)$
$=40 * 144(16)$
$=\mathbf{1 2 0 , 9 6 0} \mathbf{f t}-\mathbf{l b f}$

Answer 3(b):

Explanation of terms entropy and enthalpy which are related to physics sub topic of thermodynamics using analogy (resemblance) from social lives of humans, thus below is the explanation.
A group of young friends in the peak of their youth is very energetic and needs a large play ground to play football or hockey etc., while, when the same group of friends becomes old they become less energetic and then they only need a corner in a small coffee shop to sit together and remember the days of their youth, the memories of those days when they were more energetic and they always wanted to wander here and there.
They always wanted to play and run fast therefore they wanted permissions from their parents to participate in sports that could even harm them so they wanted more allowances, liberties and freedoms from their parents, because such allowances are demand of their energy.

Example :

Imagine a football tightly filled with air and a large empty balloon which you want to fill by transferring all of the football's air to the balloon, while doing so you are giving the air in football an opportunity to show off its energy (enthalpy) by getting size (entropy) as large as the enthalpy or energy of this air is.

An interesting fact also worth noting is that when you release the air in football to the large balloon, you also increase the hunger or thirst of this air for heat or warmth from nearby objects, surroundings or environment because now this air (after being released has become cooler and as you know that cool things absorb heat energy from surrounding environment on the other hand when earlier we put the air in football previously it turned warmer hence this air tried to release its warmth to the environment.

