

IQRA NATIONAL UNIVERSITY

FINAL ASSIGNMENT BS SOFTWARE ENGINEERING

NAME: AHMED JUNAID ID: 15815

SEMESTER 2nd BS(SE)

SUBJECT: Object Oriented Programming

Question1: A Why access modifiers are used in java, explain in detail Private
and Default?

Access Modifiers:
As we know all the programming language has Access Modifiers but as Java is
Object Oriented the declaration of Access Modifiers is Important for each field
has An Access Modifier .we don’t want some data to be controlled or
manipulated by other classes
There are what is known as 4 different access Modifiers and each of them
provides different accessibility

1- Default
2- Private
3- Protected
4- Public

I will go over Default and private in this question as the others are not asked
according to the question :

Default Access Modifiers:
Default Assigned Access Modifiers are those data field or function which can be
accessed in mostly everywhere except other packages classes and non-subclasses.
A package is Kind of a folder which holds the classes together software can have
many packages in java according to the need like for example if we were to build
a java game using OpenGL API we would have different packages like for example
input system with all the input controllers for the game and another package
named Shaders which hold shader classes I will explain this in detail in the
practical part of this question.

Private Access Modifiers:

Private Access Modifiers are those data field or function which can not be

accessed outside the main Class body to put it simply the data which has private

access is same as it sounds it is private sometime we don’t want some data to be

access by other classes so we make them private fields and private functions

again I will go over this in practical

b. Write a specific program of the above mentioned access modifiers in java.

1- Firstly I go ahead and created our ProfileBase Class which has an Default

Field Name

2- I made a contructor to take a String object as the parameter and assign it to

the Name Default field

3- Then I went ahead and created our main FinalPaper class in which I

initialized the object based on our class Profile and by passing the

constructor name

4- Then we can see that we can access the field direct and change it just like a

public field

5- Now I went ahead and made another package named AnotherPackage in

that package I created a class which runs just like FinalPaper class with main

function and all

6- In the image above you can see we cant access Name field of that Object

Private Access Modifiers:

1- Now for the private example I will be using the same class Profile Base but

this time I will mark the Name field Private

2- And as we can see we can access it in our constructor like it was before but

this time in our main FinalPaper Class we see some interesting things

3- In this class I changed nothing and right away we can see now the output is

filled with error saying The field ProfileBase.Name is not visible

4- So as I mentioned before it is private to its class body only

Q2. a. Explain in detail Public and Protected access modifiers?

Public Access Modifiers:
A public assigned Access Modifiers are those fields or methods which can

be accessed in every class and subclass, it has permission as the name itself

states public, simply put we have all the access of that particular data in all

over the program more than the default which I explained earlier

Protected Access Modifiers:

A protected assigned Access Modifiers are those Fields or methods which

can be accessed by the classes of the same package which means other

packages nonsubclass can’t access this data, but the classes and function

inside the same package can access it just like the public to put it simply

A subclass or in other words inherited class can call this function can access

it and it can be access via object but these fields or method are not

accessible outside the package (if that make sense) I will make a program

which will explain better

The only difference between this protected and public is protected are not

accessed by outside package whereas the public is accessed by outside

classes

b. Write a specific program of the above mentioned access modifiers in

java.

Protected Access Modifier:

1- First I created the same Example class ProfileBase init I declared a

Protected String Object Called Name

2- Inside the constructor I can access it

3- Now inside of main FinalPaper class which is inside the same package

MainPackage I can access and able to change it directly

4- Even in the inherited class I can access it and see it by calling super class

and Name but inside the other Package

5- Inside this class FinalPaperTwo Which is inside another package we can

not access the Name field as the error in the console says it is not visible

Public Access Modifier:

1- I Just changed the access modifier of the previous example to public

instead of protected now as we can see we can access it from within the

class

2- And as an object we can still edit it within the same package

3- And we can access it from within another class in an Another package as

well and can change it

Q3. a. What is inheritance and why it is used, discuss in detail ?

Inheritance:

Inheritance concept is the same as it is an inheritance of something to the child. In

OOP inherited child class has the functions of the parent class or also known as

SuperClass, we use the keyword extends followed by the superclass name

Now to make it clear let's take an example of the superclass of wood

Superclass wood has few property/variables like for example

Type, hardness, color and a function stats to display all this

Now let's imagine an inherited class House which extends from wood class

Now that house has the values of the wood class like hardness and type and color

however we can add more properties according to house object like windows,

doors etc etc but wood property still exist if we say satus on that House class we

can invoke the function of its superclass wood which will display its value

This is the concept of inheritance in OOP and is very usefull as the example above

explains how usefull that is again this is one of many uses of inheritance.

 b. Write a program using Inheritance class on Animal in java.

1- I first created Animal Base class and inside this class I defined some

variables like common attribute of Animal and inside the constructor I

initialized those variable fields

2- Then I created the child class named dog which is has inherited from

Animal class and inside this class I created few more variable which was

suited for dog and also few methods to later call from the object then

inside the constructor I used the superclass constructor which we call as

super() and inside this we passed appropriate arguments to the constructor

Notice how we everytime want to access some data from superclass we

write super followed by period . to access the field or function if any

3- Then I instantiated / declared the Dog class object and pass appropriate

constructor values

4- I set the speed to 20 which I forgot to show in the image

5- I called speak function

6- Followed by whoami function

Q4. a. What is polymorphism and why it is used, discuss in detail ?

Polymorphism :

Polymorphism consist of two words poly and morphism, poly means many ,

morphism means behavior , so many behavior we call this function overloading ,

is an example of polymorphism

Again once I create the program it will get clear

Pseudocode

We can have two classes one base class and one superclass and inside it we have

a method like for example sayhello() now in both of them we put different body :

Superclass which is named Human

System.out.println(“hi its me”);

Child Class which is named Boy

It has this as the body of sayhello()

System.out.println(“Yo how ya doin “);

Now if we make an object in main class like this

Human human = new Human();

Now if we call

human.sayhello();

it will output : hi its me

whereas if we make an object like this

Human boy = new Boy();

And then we call that Method sayhello()

It will output: Yo how ya doing

So even though the object is Human Class Based on declaration it has override

Function of Boy class the child class

 b. Write a program using polymorphism in a class on Employee in java.

1- I created a worker superclass and declared few appropriate variables I made a

method called introduce which will get overload and so is called polymorphism

we have a system out the statement inside it and so this will be changed

according to over object

2- I created a generic and a constructor with params to initialize

3- Now I created An Child class called Employee which extends from Worker class

inside this class I have a new field called Rank which is an additional thing I added

4-Then I made the same name Method Introduce which is, in this case,

overloading for this particular class instantiated object inside this method I

changed many things like the message with the rank

5-Lastly I defined one generic and one with parameter constructor to pass the

value to the super constructor

Then I created two objects for demonstration purpose the first one as a normal

Superclass

And The other one with the Object type of Worker but casting it as Employee

constructor / calling employee constructor

And then calling both of their introduce methods

Q5. a. Why abstraction is used in OOP, discuss in detail?

Abstraction :

Data abstraction is the process of hiding certain details and showing only essential

information to the user.

Abstraction can be achieved with either abstract classes or interfaces

An abstract class is same as an interface in java but the abstract class has the

method and fields defined/declared doesn’t necessarily need to be implemented

to the inherited class and unlike interface where the method can’t have a body

the abstract class can have body created in the abstract class itself. it is just a

restricted class that cannot be used to create objects on, to access it, it must be

inherited from another class as a template

Use of this abstract class is to extend or add more functions to a class

A normal class can’t have multiple superclasses but it can have multiple interface

or abstract classes

Sometimes we need multiple interfaces and abstract classes to a single class

which can happen and it is important to keep this in mind

There are three ways to abstract data

1- Abstract class

2- Abstract methods

3- Interface

We might get confused between data abstraction and encapsulating data, I

used to be confused but abstraction is defined as :

Abstraction means implementation hiding whereas encapsulation means

information hiding

 Encapsulation groups together data and methods that act upon the data, data

Abstraction deals with exposing the interface to the user and hiding the details

of implementation

Now what is the benefit of Abstraction in OOP:

1- It reduces the complexity of viewing things.

2- Avoids code duplication and increases reusability

3- It helps to increase the security of an application or program as only

important details are provided to the user.

I will go ahead and give an example of both abstract class and template to give

you an idea of what is it.

 b. Write a program on abstraction in java.
abstract class Shape

{

 String color;

 // these are abstract methods

 abstract double area();

 public abstract String toString();

 public Shape(String color) {

 this.color = color;

 }

 // this is a concrete method

 public String getColor() {

 return color;

 }

}

1- Firstly I created abstract shape Class and in side I have abstract methods

and a constructor to take the color and assign it to the variable color

2- I made another String returned method getColor which just returns color

variable this is what known as concrete method

class Circle extends Shape

{

 double radius;

 public Circle(String color,double radius) {

 super(color);

 this.radius = radius;

 }

 @Override

 double area() {

 return Math.PI * Math.pow(radius, 2);

 }

 @Override

 public String toString() {

 return "Circle color is " + super.color +

 "and area is : " + area();

 }

 }

3- Then I created a circle class which extends form the abstract class inside this class I have
different set of details but the superclass which is shape abstract class implements 2

methods which we made abstract these methods need to be implemented into the
base/child class

4- But we don’t need to implement getColor which was an concrete method we defined or
OVERRIDE area method and ToString Method because we want to implement this
function according to over need

class Rectangle extends Shape{

 double length;
 double width;

 public Rectangle(String color,double length,double width) {
 super(color);
 this.length = length;
 this.width = width;
 }

 @Override
 double area() {
 return length*width;
 }

 @Override
 public String toString() {
 return "Rectangle color is " + super.color +
 "and area is : " + area();
 }

}

5- I made another rectangle classs which also expends from the shape abstract class
6- Inside this class I declared variable according to that rectangle shape like as we declared radius

in the circle class inside this class I declared length and width because we know to find area of
the rectangle we need length and width instead of radius

public class FinalPaper
{
 public static void main(String[] args)
 {
 Shape ShapeC = new Circle("Blue ", 5);
 Shape ShapeR= new Rectangle("Orange ", 10, 15);

 System.out.println(ShapeC.toString());
 System.out.println(ShapeR.toString());
 }

7- Now inside of our FinalPaper class I initialized two shape abstract class object but upon

calling the constructor I used different constructors for each appropriately

8- Then I called their toString() method which resulted in giving me the output with proper

details

OUTPUT
Circle color is Blue and area is : 78.5

Rectangle color is Orange and area is : 150.0

The interface is same as abstract class but the only difference is that as we seen in

abstract class and method the method some of the function didn’t required

implementation but in interface class we must implement it there is nothing like a

concrete method as in abstract class

We use “extends” for abstract class implementation

Whereas in interface we use “implements”

